
An LP Based Market Design for Natural Gas

E.G. Read, B. J. Ring, S.R. Starkey, and W. Pepper

Abstract Many electricity markets are now cleared using Linear Programming

(LP) formulations that simultaneously determine an optimal dispatch and

corresponding nodal prices, for each market dispatch interval. Although natural

gas markets have traditionally operated in a very different fashion, the same basic

concept can be applied. Since 1999, the Australian state of Victoria has operated a

gas market based on an LP approximation to the underlying gas flow optimization

problem. Here we discuss market design issues, using a formulation derived from

the key gas flow equations. Dual variables on key constraints imply prices which

vary by location, as for electricity markets, but also by time. But gas is both delayed

and stored within the transportation system itself. This raises a number of opera-

tional, pricing, and hedging issues which could be ignored in the case of electricity,

but become important when operating this kind of market for gas, or other

commodities, such as water, in a supply network where there are delays and storage.
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1 Introduction

Many electricity markets are now cleared using an LP-based “Market Clearing

Engine” (MCE) to optimize the value of trade, as determined by participant bids

and offers. An MCE formulation typically optimizes power system operations at

quite a detailed level, using a detailed representation of the transmission system,

and simultaneously optimizing dispatch of generation, transmission power flows,

and often ancillary services. This level of detail also enables the MCE to simulta-

neously determine corresponding prices for energy at each “node” in the transmis-

sion system, and often for each ancillary service, in each market dispatch interval.

In 1996, the first market of this type was developed in New Zealand [2]. The

Australian “National Electricity Market” (NEM) followed soon after, in 1997, using

a re-developed version of the same software, NEM1. That development was also

partly built upon the Victorian electricity market, which had been successfully

operating in the State of Victoria since 1994, with interconnected trade between

Victoria and New South Wales commencing mid 1997 [39]. Broadly similar elec-

tricity markets were being discussed or developed in many parts of the world [14],

and are now widespread [36]. Thus an extensive literature was developing on topics

such as the design of such markets, how market participants might behave in that

environment, and how they might hedge their risks over time and space. Hogan [15]

had also proposed an auction based model for allocation of gas transport capacity,

while McCabe et al. [43] had performed simulations of simple market structures.

These developments lead the Victorian State Government to consider the desir-

ability of developing a similar kind ofmarket for trading natural gas, in that State [42].

The gas system operates in a broadly analogous way to electricity, with a variety of

suppliers and consumers, simultaneously injecting gas into, or withdrawing gas from,

various points in an interconnected “transmission network”. As reported by DPI [10],

the Victorian gas system currently has six suppliers, three major retail buyers, and

multiple wholesale traders. As shown in Fig. 2, the gas transmission system is a

meshed network with multiple inter-regional connectors and active underground gas

storages. In 1996, though, there was only one supplier and buyer, operating under a

single long termcontract, with a simpler network, and no interconnections. Themarket

design discussed here was developed to allow that monopolistic arrangement to be

decomposed, and to support evolution towards a more dynamic trading environment.

Convergence towards a consistent market framework also seemed desirable in

view of the way in which natural gas interacts with electricity, both as a fuel for

generation and a competing supplier of end demand. Thus, one goal of the initial

design was to try and create a gas market framework which drew on experience

with electricity markets, aligned with the Australian electricity market, and could

develop towards greater integration over time. The key question was whether the

basic concepts developed for electricity markets could also be applied to gas, in the

sense that an analogous “nodal” market-clearing formulation could be developed,

and form a practical basis for trading. Further, if that was possible, under what

circumstances might it be worthwhile to do so?
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This paper focuses on the conceptual market design issues, using an LP formu-

lation analogous to those employed in the electricity sector, based on a representa-

tion of the gas system dispatch problem in nonlinear form. In reality, from its

inception in March 1999 [1], the Victorian gas market has been dispatched using an

MCE based on an LP model developed by ICF International. As described in

Pepper et al. [26], the MCE incorporates a number of advanced features to deal

with various physical and computational issues, and takes a different approach to

linearizing the gas flow equations. That model has proved accurate and reliable, but

its fundamental variables are a set of convex weights, which does not make for any

intuitive discussion of the forces driving pricing effects in a way likely to prove

meaningful to potential developers of gas markets. (In the same way, meaningful

discussion of pricing effects in electricity markets must be based on a representation

of the fundamental electrical relationships, in a full nodal model, not on the kind of

implicit representation some markets use in practice).

The reader is referred to Pepper et al. for a description of the implemented

model. Since our goal in this paper is really to discuss the implications of adopting

this kind of approach to gas market trading, we abstract away from some of the

detail and base our exposition on the original formulation originally developed by

Read and Whaley [32], as part of the Putnam Hayes and Bartlett (PHB) team

responsible for the market design. Even though this simplified formulation was

not implemented in practice, it provides a more accessible introduction to the

concepts, starting from a standard “textbook” representation of the gas flow

equations, and produces a dual that is more readily interpreted. It will be seen

that the resultant formulation is really no more complex than some of the

formulations that have been discussed or applied to form electricity markets,

particularly if AC power flow equations are modeled [16], and/or ancillary services

co-optimized [31], and/or inter-temporal unit commitment constraints represented

[17]. Thus this kind of market development does not seem infeasible on grounds of

complexity.

The major complication is that the gas flow equations imply that gas is both

delayed and stored within the transportation system itself. This raises a number of

operational, pricing, and hedging issues which could be ignored in the case of

electricity, but become important when operating this kind of market in a gas supply

network. One major motivation for discussing these issues, at this time, is that similar

issues are likely to be important in markets for other commodities, such as water [28],

where delays and storage also occur within the “transportation system” over which

the market operates. On the other hand, while Pepper et al. [26] describes a market

dispatch process that has proceeded down the path of increasing sophistication and

precision, commercial gas market trading is actually based on a highly simplified

version of the formulation. In fact, the initial market clearing logic of Ruff [35] only

involved a daily clearing of a market in daily gas delivery, while also accounting for

overnight storage in the system. For reasons discussed later, the market has still only

moved forward to the point of re-clearing to determine prices for the remainder of the

day at four-hourly intervals. The studies reported by Frontier Economics [11] did
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show the potential for significant spatio-temporal differentiation in the marginal

value of gas, suggesting the potential value of this kind of market design.

The approach described here was developed in 1997, when there seemed to be

little or no literature on the application of optimization models to support, or

analyze, trading in gas markets. Since that time, gas market deregulation has

proceeded in many places, and the literature has developed accordingly, although

to a significantly lesser degree than for electricity markets. Zheng et al. [40] survey

gas sector optimization models being applied to optimization of various aspects of

gas production, and of gas pipeline network development and operations, but most

of those papers do not deal with gas markets, per se. O’Neil et al. [24] and Gabriel

et al. [12] model economic equilibrium in gas markets, broadly defined, while

Cremer et al. [6] seek to characterize pricing patterns in pipeline networks, with and

without a cost recovery requirement. But all these models deal with the issues at a

high level, on a much broader scale and longer time frame than envisaged here, and

were not intended to form a basis for actual spot gas trading.

De Wolf and Smeers [7], Breton and Zaccour [4], and Gabriel et al. [13] all deal

with strategic gaming issues in deregulated gas markets, although only the last

models the physical gas transportation system, again on a relatively broad scale.

Although the potential for gaming is certainly an important issue for the Victorian

system, with its relatively small group of participants, it lies beyond our present

scope. Our goal was simply to produce a market framework in which prices are

closely aligned with physical system realities, and economic costs. In this respect,

the closest approach to ours is probably that of Midthun et al. [21], who discuss a

piece-wise linearization approach to modeling the nonlinear pipeline transportation

dynamics, and Midthun et al. [21] who apply that approach to consider a gaming

problem in which the pipe system operator plays an active role, rather than being a

passive “system operator” as in our market paradigm.

2 Market Concepts

Most gas pipelines in the world operate under a contract carriage model. Historical

overviews of the emergence of competition in the US may be found in Vany and

Walls [37] and Doanne and Spulber [8]. Under this model, the pipeline operator

funds its pipeline by selling access to shippers of gas with varying levels of priority.

Those with the greatest priority have firm access to the pipeline and tend to pay the

most for their access. Those with less priority pay less, but only get access to the

pipeline to the extent that it has otherwise unused capacity. Open access regimes

may be imposed by regulators who require some transparency to these

arrangements, but the basic access arrangement is still via bilateral contracts.

Markets for gas around the world generally operate at hubs between pipelines.

Gas can be delivered to these hubs in accordance with pipeline usage contracts,

traded at the hub, and hauled away on other pipelines or consumed at the hub. In the

US an unregulated natural gas market trades over the New York Mercantile

80 E.G. Read et al.



Exchange (NYME). Futures contracts are traded relative to the principal Henry

Hub, in Louisiana. Two equivalent virtual trading point markets are the National

Balancing Point (NBP) system in the UK, and the Title Transfer Facility (TTF) in

the Netherlands. A Short Term Trading Market (STTM) for gas along these lines

operates in Australia at hubs in Adelaide and Sydney, and soon in Brisbane.

The Victorian Gas Market is different in that it operates instead on the concept of

“market carriage”. The Primary Transmission System (PTS) is funded through

Transmission Use of System (TUOS) charges, rather than under bilateral

contracting arrangements. This makes it very similar to how electricity transmis-

sion systems are funded. With the network funded in this manner, the Victorian Gas

Market can operate a “commodity only” market for the trade of gas, and has done so

since 1999. Further, with AEMO operating the network, the trade of gas can be used

to determine day-to-day transmission access, and (in principle) point-to-point

transport charges. Given the obvious analogies between the gas and electricity

systems it seems natural to ask whether the concepts that have been applied to

design electricity markets might also be applied to design gas markets.

Ignoring a simplified marginal loss adjustment, the Australian electricity market

differentiates spot prices by region, so there is only one spot electricity price for all

of Victoria. Another point of reference was the New Zealand electricity market,

which determines spot prices for each node at which physical injection or off-take

occurs [2]. Both operate on the basis of prices for half-hourly trading intervals.

Buying and selling (wholesale) electricity is done through a “pool”, where electric-

ity generators offer electricity to the marketplace for dispatch through the electric-

ity transmission network. A central market coordinator receives generation offers

(and potentially load bids), determines which of those should be accepted (i.e.,

“clears the market”), implements the optimal dispatch, and announces the

corresponding spot prices, all in real time. Thus the goal here was to develop an

analogous market design for gas, in which a “market-clearing solution” is deter-

mined by an LP optimization model that simultaneously determines:

• A “dispatch” schedule for all gas “injections” and “off-takes” that is optimal, in

the sense that it maximize the “value of trade” defined as the benefits delivered

to loads (as determined by their bids), minus the costs incurred by suppliers (as

determined by their offers).

• A matching set of “nodal” spot prices, varying over time and across network

locations, defined by the marginal cost of meeting a (possibly hypothetical) load

at each time and location, and applied symmetrically to buy gas from suppliers,

and sell gas to consumers.

3 Gas Flow Modeling

In principle, we can divide pipelines up into arbitrarily small cells, and it becomes

somewhat arbitrary as to whether primary variables are defined at cell midpoints, or

cell boundaries. Our basic nonlinear formulation is based on the initial market
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design formulation developed by Read and Whaley [32]. They developed their

formulation in terms of average midpoint cell values, assuming velocity and

pressure changes to be implicitly defined at cell boundaries. That approach was

designed to be applied to a fairly discretized representation of a uniform pipeline,

though. Pepper et al. [26] model a more general network, approximating over quite

long pipeline segments, and modeling nodes where multiple pipes may connect,

and various pipe fittings that may induce step changes in velocity and pressure.

We briefly touch on such issues in an Appendix, but here take an intermediate

approach, developing a formulation for a single pipeline, with variables primarily

defined at cell boundaries, which can be thought of as nodes. The major complica-

tion is that natural gas is compressible, unlike some other piped fluids such as water,

so its density (and hence pressure) varies, with gas flows being driven by pressure

differences. We start with general equations, which allow pressures etc. to differ on

each side of each junction, but later assume a single pressure variable at each

junction, so as to develop a simplified conceptual formulation. Pepper et al. provide

a more detailed development of the actual formulation employed.

The pipeline is split into segments as shown above in Fig. 1. A variable at the

centre point of the subscripted nth element represents the average value. We discuss

flow reversals later but, for simplicity, assume flow is from cell n�1, to n, to n + 1
etc. For simplicity we also assume time periods to be of unit length. The key

variables are gas pressure and flow, at the beginning of each pipe segment (or

cell), n ¼ 1,. . .,N and at, or from, the beginning of time period, t ¼ 1,. . .,T. Other
variables are derived from these, as necessary. Notationally, constants are

represented using normal fonts (e.g. R or H below), whereas variables and indices

are represented using italic fonts (e.g. qi, mn etc.).

Fig. 1 Key variables for gas pipeline modeling
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If there were no compression, the problem could be formulated in terms of fixed

volumes of gas travelling from one cell, n, to the next cell, n + 1, with some delay. In

reality gas density/pressure can vary, and flows are driven by pressure differences but,

eventually, balancing forces act to equalize those pressure differences. Gas stored in

the transport system is known as “linepack”, and this plays an important role in

system operation. Daily demands can generally not be met unless linepack storage is

built up substantially by pressurizing the gas pipeline overnight. An increase in cell

pressure means that more mass is stored in that pipe cell. Thus the mass in the nth
cell, at time t, is proportional to the average pressure in the cell, and given by:

mt
n ¼ LnGn~p

t
n (1)

~ptn ¼ ðptin þ pton Þ=2 (2)

Gn¼An/RH (3)

Here the nth pipeline cell has diameterDn, cross-sectional areaAn, and lengthLn. H

is the gas temperature , assumed to be constant, and R is known as the “specific gas

constant” for the particular gas composition in the pipeline. The rate of gas (mass) flow

at any point (e.g. qtn) is determined by the pressure of the gas, and its velocity.Wewill

apply this relationship to the midpoint flow/pressure/velocity values, as in (4). This

allows us to state the mass conservation equation for each cell, as in (6). Note that, in

this equation, injection (ytn) is treated interchangeably with mass (mt
n), and mass is a

midpoint value, reflecting average pressure across the cell. Thus injection is implicitly

treated as if it were occurring at the midpoint of a cell, increasing pressures at both

ends. This is not likely to happen, in practice, but the cell inwhich injection is assumed

to occur can be made arbitrarily short, or represented by a “node” as in Pepper et al.

~qtn ¼ Gn~p
t
n~v

t
n (4)

~qtn ¼ ðqtin þ qton Þ=2 (5)

mtþ1
n ¼ mt

n þ qtin � qton þ ytn (6)

Modisette and Modisette [22] discuss fluid forces in pipes, initially defining the

forces for a single element. By applying the conservation of momentum, they then

sum forces and flows across all time periods and pipe elements. We use their results

to present what is known as the Bernoulli equation, in its more general form for

unsteady flows, which we state for the midpoint velocity/pressure pair:1

1 In this formulation, the pipe is assumed to be horizontal, thus eliminating the gravitational term

‘g � siny’, for an elevation angle of y. The effect of this force is negligible because natural gas is
nearly twice as light as air, at standard conditions. Superscripts i and o are dropped because this

equation applies at any point.
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Dvtn þ ~vtnrvtn þ Bnð~vtnÞ2 ¼ �RHrptn ~ptn
�

(7)

Bn = f = 2Dn (8)

Here f is the “Moody friction factor”, which we assume to be a fixed parameter.

This Bernoulli equation describes energies within the pipe system, at a given point

in time and space. On the LHS, the equation describes the rate of change of gas

velocity in time and then in space, and the final LHS term represents viscous losses.

These dynamic velocity terms equate to the RHS proportional pressure change

term, i.e. the absolute pressure gradient divided by the actual pressure value. In

practice we can make the time periods as short as required to allow the model to

solve with sufficient accuracy, and replace derivatives with differences. To allow

Eq. 7 to be expressed for the midpoint of a cell, we define:

~vtn ¼ ðvtin þ vton Þ=2 (9)

Dvtn ¼ vtþ1
n � vt�1

n (10)

rvtn ¼ ðvton � vtinÞ=Ln (11)

rptn ¼ ðpton � ptinÞ=Ln (12)

Each pipe section will have a working pressure range, and may also have

maximum velocity limits. Since flow in a network, especially on loops, can be bi-

directional the physical lower bound is likely to have a negative value. Later, we set

this lower bound to zero, so as to keep solutions within the range where solutions

are convex.2 In reality, both bounds are more likely to bind at the inlet end of a cell,

but for now we impose them on midpoint flows, because this simplifies the dual of

our formulation, and discuss variations later:

Pt
n � ~ptin � P

t
n (13)

Vt
n � ~vtin � V

t
n (14)

Equations 1, 2, 4, 5, 6, 7 and 9, 10, 11, 12, 13, 14 describe the key physical gas

flow relationships, and consequently feature prominently in the optimization model,

with the associated dual variables generating the information required to create

consistent market trading prices. Apart from this, an initial pressure (mass) and/

flow profile must be assumed, and a target (range) specified for the final period. But

the above model is incomplete, because we have not specified how the input variables

2Direction of flow is relative to a conventional direction, which for simplicity we define as being

from i (inlet) to o (outlet). As with electricity networks this can be generalized by defining a

conventional direction for all arcs, then allowing the flow to take a +/� value in that direction.
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for each pipe cell link to the outlet variables for the upstream cell. It should be clear

that the flow out from cell n�1 to cell n equals the flow in to cell n from cell n�1, in
mass terms. Both pressure and velocity may change, though, if there is some kind of

fitting, or compressor, or just a change in diameter at the junction of two pipelines. A

reasonably simple formulation can be produced by assuming that that there will be a

proportional change in pressure at such a junction, at least locally around some likely

solution level with velocity adjusting to match. But we will simplify further, by

assuming that there are no special fittings, or pipeline diameter changes, at junctions.

Thus not only mass flow, but pressure and velocity have the same value immediately

upstream and downstream from each junction. This means that we can drop the

distinction between inlet and outlet variables, with ptin etc. just becoming ptn etc. and
pton etc. just becoming ptnþ1 etc. Thus, for example:

ptn ¼ ptin ¼ pton�1 (15)

4 Basic Market Clearing Formulation

We can now state a formulation for a single pipeline, over a gas trading day. We

assume that flow always occurs in a uniform direction, in the direction from cell

n�1 to n to n + 1, and use the endpoint formulation, assuming pipelines of uniform

cross-section, with no abrupt pressure changes due to fittings, as discussed above.

Thus Gn becomes simply G from here on. An appendix discusses modeling of

complications such as compressors, fittings, and junctions. Initial linepack in the

pipeline is inherited from the previous day’s end condition, as specified in (20).3

The end state of the system, at time T + 1, must be set to ensure sufficient linepack

carryover; in the required sections of pipeline, to meet next trading day’s

requirements. In the limit we could try to force final linepack in each cell to a

specific value, representing a desired pressure/flow profile for the start of the next

trading day, between defined limits. But this is too restrictive, and could lead to

extreme price impacts, if not infeasibility, as the system will struggle to meet any

exact profile. Still, we may group pipe segments into “zones”, z 2 Z, for which the

aggregate end of day linepack must be between defined limits, as in (21).4

3We could also specify initial flows to get a more accurate representation of the nonlinear

equations involved. But that increased accuracy would come at the cost of increasing the

likelihood that the LP could not actually find any feasible initial flow/pressure pattern to exactly

match the specified parameters.
4 A combination of upper and lower bounds may suffice to ensure that pressure differentials are

also large enough to create sufficient flow in the next trading day. But pressure differential

constraints may also be added to ensure this directly, and independently of aggregate linepack

levels.
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The formulation seeks to maximize the value from allocating gas across time t,
and space n, as expressed by Eq. 16. To the extent possible, the optimization

balances trade between time periods from t ¼ 1,. . .,T, and over all nodes from

n ¼ 1,. . .,N. Participants submit bids and offers as price (Bidtn and Offertn) and

quantity (xtdi and xtsi) combinations. Individual participant involvement depends on

the physical configuration of the system, at each specific location. Many pipe cells

will only have extractions, while many others only injection, but most will have

neither. For each individual consumer or supplier spot market bidding is

represented by Eqs. 16 and 17, where the index subscript i indicates a single bid

or offer tranche from a demand (d) or supply (s) side participant.5 The aggregate net
injection of gas into the system into cell n, at time t, is given by Eq. 18, and upper

and lower limits are imposed on this via Eq. 19. Combining all these market bid/

offer curves with the gas flow and pressure equations, and ignoring linepack

bidding, generates the following nonlinear dispatch formulation.

Maximise
x; y;m; p; ~p; q;

~q;rp; v; ~v;rv

X
t

X
n

X
d2Dn

X
i

Bidtdix
t
di �

X
s2Sn

X
i

Offertsix
t
si

 !
(16)

Subject to:6

Mass, pressure, flow and velocity relationships, within a cell:

mt
n ¼ LnG ~ptn (1)

~ptn ¼ ðptn þ ptnþ1Þ=2 : ct
n (2a)

~qtn ¼ G ~ptn~v
t
n (4)

~qtn ¼ ðqtn þ qtnþ1Þ=2 : �tn (5a)

~vtn ¼ ðvtn þ vtnþ1Þ=2 (9a)

Mass conservation equation:

mtþ1
n ¼ mt

n þ qtn � qtnþ1 þ ytn : mtn (6a)

Bernoulli energy conservation equation with substitution from (10), over cell:

5 The notation i,d ∈ n means i or d is located at node n. i ∈ D(n) means i is a bid from a demand

side participant at n. i ∈ d means i is a bid/offer from d, etc.
6 All constraints are 8 n ¼ 1,. . .,N and t ¼ 1,. . .,T unless otherwise stated. Greek symbols

associated with equation numbers indicate the key dual variables which will be significant in

later discussion of pricing relationships.
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~vtþ1
n � ~vt�1

n þ ~vtnrvtn þ Bnð~vtnÞ2 þ RHrptn ~ptn
� ¼ 0 : btn (7a)

Velocity and pressure gradients:

rvtn ¼ ðvtnþ1 � vtnÞ=Ln (11a)

rptn ¼ ðptnþ1 � ptnÞ=Ln (12a)

Pressure bounds:

Ptn � ~ptn � �P
t
n : ft

n
; �ft

n (13a)

Velocity bounds:

Vt
n � ~vtn � V

t
n : wt

n
; �wtn (14a)

Bounds on offer/bid tranches:

0 � xti � Xt
i : gt

i
; �gti (17)

Net injection into a cell:

ytn ¼
X
s2n

xts �
X
d2n

xtd : ltn (18)

Net injection bounds:

Yt
n � ytn � Y

t
n : dtn;�d

t
n (19)

Initial linepack status:

m0
n ¼ M0

n : 8n 2 N (20)

Final linepack bounds:

MTþ1
z �

X
n2z

mTþ1
n � M

Tþ1

z : 8 z 2 Z (21)

Alternatively, or additionally, terms could be included in the objective function

representing a set of net demand curves for linepack in various zones. These would

consist of a set of bid tranches, xTþ1
zi each bidding to buy linepack in zone z, at a

price of PackBidTþ1
zi . Thus (ignoring the possibility that participants might already

own linepack rights that they wish to sell) the following could be added to (16)

above:
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þ
X
z2Z

X
i

PackBidTþ1
zi xTþ1

zi (22)

The total system linepack at the end of the period T, across all nodes n in z,
would then have to match the linepack purchased for the final period:

mTþ1
z ¼

X
n2z

mTþ1
n ¼

X
i2z

xTþ1
zi (23)

5 Simplification and Linearization

If we are to clear the market using LP software, we must first linearize the nonlinear

constraints in the formulation of Sect. 4. Read and Whaley [32] originally proposed

to substitute the mass/pressure and flow/velocity relationship in Eqs. 1 and 4 into

Eq. 6a, then linearize the resultant nonlinear flow/ pressure equation directly. They

also showed how to re-arrange the Bernoulli equation (7a) into two expressions, one

involving only velocities, and the other only pressures, and apply Taylor’s expan-

sion separately to each.

The relevant derivatives can certainly be formed, but they will not be discussed

here, partly because that approach was not actually adopted in practice, and partly

because it creates a dual formulation from which it is not particularly easy to deduce

pricing relationships. But there were also concerns with respect to the accuracy and

convexity of the implied approximation. One proposal was to employ an iterative

successive linearization scheme, with each iteration solving an LP linearized

around the solution from the previous iteration. A coarse discretization can yield

a poor result in this kind of modeling, because small errors can propagate and

compound though the equation set. The goal of the representation introduced in

Fig. 1 was to re-express the underlying nonlinear differential equations by a set of

linear difference equations, with both time and space discretized on a sufficiently

fine grid to make the linear assumption reasonable, and to refine the grid further,

around a proposed solution, if the results were deemed to be too inaccurate. But this

approach is similar to employing Euler’s method to solve the underlying differen-

tial equations. In practice, that first order method is known to have stability issues,

and a fine discretization may be required. Thus higher order methods are generally

applied, as described by Dorin and Toma-Leonida [9], for example.

Thus piece-wise linearization within the LP seemed preferable to successive

linearization. It was proposed that a piece-wise linear model could be produced

using Taylor’s expansions, as above, to create “supporting hyper-planes” around a

set of points spanning the feasible region. A critical issue, though, was whether the

piece-wise linearization so produced would actually form a convex LP feasible

region. It can be shown that the flow equations are not actually convex if flows are

allowed to reverse, but Read and Whaley argued that an acceptable convex
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approximation could be found in the vicinity of any likely optimum. There are

actually two possible issues here, and a later section discusses why piece-wise

linearization may break down in situations where gas, or gas flow, turn out to have

negative value. But, concerns about the potential non-convexity of the feasible

region itself focused on the first two terms in the Bernoulli equation, relating to

velocity changes and kinetic energy, and to the possibility of flow reversal.

Read andWhaley wished to retain these terms in the Bernoulli equation because,

at the time, it was unclear whether they would have any significant pricing

implications. But almost all other authors, including Pepper et al. [26], have

considered those terms small enough to be ignored, on the grounds that a gas,

being very light, has little kinetic energy or momentum. Thus it is reasonable to

assume that changes to gas injection or withdrawal rates will primarily be reflected

in changes to pressure/flow relationships. Friction losses will slow the process, but

velocities will quickly respond without significant expenditure of energy to reflect

this new “steady state”, which then evolves over a longer time frame in accordance

with the flow and mass balance equations. Thus most authors use a steady state

version of the Bernoulli equation, in which the first (time derivative) term is

dropped, and most authors also drop the kinetic energy term. Since the pressure

in (7a) in the average pressure over that whole cell, which is proportional to the

mass in the cell, Eq. (7a) can be simplified to:7

~qtn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
An=BnLn

ph i
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�rptnm

t
n

p
: btn (7b)

This form of the equation clearly encloses a convex feasible region.8 In fact it

forms a convex cone, being linear in mt
n along any ray where � mt

n=rptn is

constant. Although we can now drop (11a), defining rvtn, because it no longer

appears in (7b), ~vtn itself is still defined by (4) and appears in the velocity bounds

(14a). But ~vtn can be eliminated from the formulation, along with (4) and (9a), by

substituting (4) into (14a) and re-arranging to express those bounds as constraints

on flow, as a function of pressure.9

GVt
n~p

t
n � ~qtn � GVt

n~p
t
n : �wtn; �w

t
n (14b)

7A substitution for velocity in terms of flow and pressure is made from (4) and the equation is re-

arranged in terms of q with coefficients grouped. This steady sate equation assumes that the mass

flow rate is uniform across cell n, and period t. While this approximation is commonly employed, it

is not quite consistent with (4), which allows the mass in the cell to change, implying different flow

rates at each end.
8mt

n is always positive and (12a) ensures that �rptn is positive, since we are excluding solutions
where flows reverse. Thus the RHS is just a constant times their geometric mean which is known to

enclose a convex set [3].
9 Note that, if the lower velocity limit is only used to prevent flow reversal, Vt

n will be set to zero,

so the lower bound on mass flow is also set to zero, irrespective of pressure.
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If we use (1) to substitute form in terms of endpoint pressures, ptn and p
t
nþ1, while

also substituting for rptn from (12a) (which can then be dropped from the formula-

tion) we get:

~qtn ¼ An=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BnRHLn

ph i
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðptnÞ2 � ðptnþ1Þ2
� �r

: btn (7c)

This is just the Weymouth equation employed by many other authors, in various

forms. If we let s be the ratio of the downstream and upstream pressures, then

substituting sptnþ1 for ptn makes it clear that this expression is linear in upstream

pressure (or downstream pressure) along any ray from the origin, in the upstream/

downstream pressure plane, over the range of interest. (That is for 0 < s < 1, since

otherwise downstream pressure would be higher than upstream pressure, causing

flow to reverse.) Over that range, this expression also forms part of a convex cone,

as discussed by Tomasgard et al. [38] and Midthun et al. [21].

Zhou and Adewumi [41] take a different route. They form a steady state version

of (7) by dropping the first term with its time derivative, but show how to obtain

analytic expressions for flow which account for the kinetic energy term. Re-

arranging their equation (12), for a horizontal pipe, and re-expressing it in our

notation gives a modified form of Eq. (7c).10

~qtn ¼ An=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BnRHLn�RHln

ptnþ1

ptn

� �2
s2

4
3
5�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðptnÞ2�ðptnþ1Þ2
� �r

: btn (7d)

This approximation can not hold for outlet pressures (and hence outlet/inlet

pressure ratios) near zero, because then the logarithm in the divisor tends to infinity,

and the predicted flow falls rapidly to zero. For more realistic outlet/inlet pressure

ratios, closer to unity, the logarithmic term is close to zero, and this equation creates

only a modest adjustment to the Weymouth formula, implying a slightly greater

resistance to flow. Substituting sptnþ1 for p
t
n shows that this, too, is linear in pressure

along any ray with constant outlet/inlet pressure ratio, and letting that ratio range

from a small value up to 1 also forms part of a convex cone.

Although (7d) provides a convex formulation which accounts for the kinetic

energy term, we will use the much more common Weymouth type equation in (7c).

Martin et al. [19] discuss a piece-wise linearization that could be applied to either

equation, using “convex combinations”, in the context of a mixed integer formula-

tion. In Victoria a hybrid approach was adopted, using convex combinations to

form a piece-wise linear formulation most of the time, but reverting to successive

linearization when required to deal with “convexity issues”. The detail may be

10Assuming a compressibility of Z ¼ 1, using the Specific Gas Constant rather than the Universal

Gas Constant, and assessing the pressure drop over a cells length Ln.
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found in Pepper et al. [26]. But Tomasgard et al. [38] andMidthun et al. [21] discuss

piece-wise linearization using hyper-planes created around a set of points, as

suggested by Read and Whaley [32]. Using Maple# (see www.maplesoft.com),

and re-arranging provides (7e) as the linearization of (7c) around a point denoted by

superscript *. Here constant terms are enclosed in square brackets, and the simpli-

fication of Ft�n reflects the fact that the square root term on the top line is just a

constant times the expression for ~qt�n , the flow corresponding to (pt�n ,p
t�
nþ1), while the

( ) in the divisor is just the square of the same term.

~qtn ¼ Ft�n � pt�n
� 	

ptn � pt�nþ1

� 	
ptnþ1


 �
: btn (7e)

Where

Ft�n ¼
An �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpt�n Þ2 � ðpt�nþ1Þ2
� �r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BnRHLn

p � ðpt�n Þ2 � ðpt�nþ1Þ2
� �

2
664

3
775 ¼ A2

n

2BnRHLn~qt�n

� 


We will adopt this linearization approach here because it provides a dual

formulation from which pricing relationships can be readily be deduced. In the

context of a successive linearization scheme, (7e) can be left in equality form,

representing the current linearization about a specific point. To create supporting

hyper-planes for piece-wise linearization, though, we need to form several copies of

(7e), each linearized around a different point, and treats these as inequalities as

follows:

~qtn � ptn � Ft�nkp
t�
nk

� 	� ptnþ1 � Ft�nkp
t�
nþ1;k

h i
: k ¼ 1; :::;K : btnk (7f)

Thus the final simplified LP formulation consists of equations (2), (5) (6a), (7f),

(13a), (14b), and (16, 17, 18, 19, 20, 21).

6 Pricing Implications

Although Cremer et al. [6] present a high level analysis of some pricing

relationships, we have not seen any systematic analysis of the kind of price patterns

that could arise as a result of modeling gas transport dynamics on the time and

distance scales discussed here. As with any LP, a complete dual formulation could

be stated, and solution of the primal problem will automatically determine the

solution of that dual. But market participants, and market designers, will want to

understand how those prices are driven by offers and bids, and the kind of pricing

patterns that will be produced. To generate that insight, we focus on the key dual

relationships determining the way in which spatio-temporal price information
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generated by solution of the LP reflects the opportunity costs of having one more

unit of natural gas available to supply at any time and place.

As always, there will be one dual pricing constraint for each primal variable, and

we can generate that constraint simply by collecting terms and summing them. Thus

if variable xi appears with coefficient aik in constraint k, then the shadow price on

constraint k will appear in the pricing constraint for commodity xi, with the same

coefficient. Also note that if a primal constraint relating to cell n and period

t contains primal variables relating to, say, cell n + 1 and/or period t + 1, then
the corresponding primal variables for period n and t must appear in primal

constraints relating to cell n�1 and/or period t�1. So the pricing equation for

that primal variable will involve shadow prices computed for those constraints.

Ultimately we are really only concerned to price commodities traded in the market,

in this case gas injected/extracted, and possibly end-of-day linepack.11 In other

words, ultimately, we are mainly interested in the shadow prices on constraints

(18). However, these prices depend on the prices of other (non-traded)

commodities, and all will ultimately be determined by what is effectively the

solution of a set of simultaneous equations, in the LP solution process. Thus we

need to consider some other pricing relationships as well.

First note that for a maximization objective, standard duality theory implies that

the shadow prices on < constraints will be positive, while those on > constraints

will be negative. We have expressed all upper bounds in our formulation as <
constraints, and all lower bounds as > constraints. So the shadow prices on all

upper bounds will be positive, while those on all lower bounds will be negative.

Thus adding the shadow prices on upper and lower bounds effectively creates a

composite shadow price, which will be positive if the upper limit binds, and

negative if the lower limit binds. (Similarly. the shadow price on an equality

constraint will be positive if it binds as an upper limit and negative if it binds as a

lower limit.). With that convention in mind, the pricing equations corresponding to

the variables for traded quantities, xtdi and xtsi, and for net injection ytn, are:
12

ltn ¼ Bidtdi � gt
di
þ �gtdi

� �
: xtdi (24a)

ltn ¼ Offertsi þ gt
si
þ �gtsi

� �
: xtsi (24b)

ltn ¼ mtn � dtn þ �dtn

 �

: ytn (25)

11 By way of analogy, an electricity market formulation such as that in Alvey et al. [2] may be used

to determine prices for line capacity, and even phase angles, but we really only focus on prices for

electricity injected/extracted.
12 Primal variables are associated with each dual equation, just as dual variables were associated

with each primal equation.
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These conditions are easily interpreted. First, (24a) implies that the local price, l,
will equal the price for some step of the local bid/offer stack if, and only if, that bid/

offer is “marginal” at the optimum. That is, if and only if the market is free to take

one more, or one less, unit from that step at the offer/bid price because it is not up

against either the upper or lower limit of that step. The whole price system is driven

by these (marginal) bid/offer prices. Otherwise, one of the g prices will be non-zero.
For offers, the upper (or lower) limit will bind when the market price, l, is above (or
below) the offer price and (24b) merely shows how �gti (or g

t
i
) adjust to reflect that

difference. For bids to buy gas, the situation is reversed, because a positive buy

variable corresponds to a decrease in net supply, and has the opposite coefficient in

the objective function.

Second, we can take mtn, the shadow price on the mass conservation constraint

(6a) to be the system price for gas injected into the main transmission system at that

time and place i.e. ytn.
13 From (25), the local price, l, will equal m if, but only if, the

market is free to take one more, or one less, unit from that location, at the local

price, because it is not up against either the upper or lower injection/extraction limit

at that location. Otherwise, if multiple participants want to inject (or extract) more

gas at n than the bottleneck constraints (19) will accommodate, �d (or d) will be non-
zero, and m will be higher (lower) than l, in order to throttle injection (extraction)

back to the bottleneck capacity limit. Local participants could trade between

themselves at the l price, in order to ration limited injection/extraction capacity,

but that local price will not impact on prices anywhere else in the system.

The issue is, though, to determine the system price, m, for non-marginal

locations, where injection/extraction is constrained, or limited by upper/lower

offer/bid limits. Fundamentally, the price of a unit of gas at any point in the system,

and in time, is determined by the marginal value that gas may have in meeting

future requirements (or reducing the need for future supply) at some time and place.

In this deterministic market-clearing formulation the gas price will also be the

marginal cost of supplying gas to that point in time and space, from whatever

sources are marginal. Looking at the issue either way, the value of gas at each time

and place must be consistent with prices at adjacent times and places, which must

be consistent to prices at times and places adjacent to them, and so on, until

13 This is a slight simplification, with respect to the original formulation, because injected gas will

also have a velocity of its own, and if this was modeled it would have some small impact on the

solution of the gas transport equations. Thus, in principle, we could have differing prices for “fast

gas” and “slow gas” injected at the same time and place. But no such distinction arises here,

because the simplified formulation ignores gas velocity.

This situation is conceptually similar to that with respect to electricity injected or consumed

with differing “power factors” in electricity markets. Hogan et al. [16] discuss a regime that would

explicitly price the active and reactive components determining power factor. But real electricity

markets typically only price and trade active power, using a DC approximation to the power flow

equations, while relying on other agreements to control power factor within acceptable limits. We

assume the same to be true here, with respect to the setting of injection pressure differentials, and

hence velocities.
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ultimately the entire price system is driven by a small set of marginal offer/bids. In

our simplified model these marginal prices will be for gas bought or sold in some

node in some period of the day. (If linepack trading were allowed for in the

formulation, the marginal prices be prices for end-of-day linepack, as determined

by some Packbid)

Just as for electricity markets, the equations linking all these system prices

together are the duals of the equations linking the physical quantities together in

the gas transmission system. These are the mass balance equations, the shadow

prices on which are the system gas prices, m, and the Bernoulli equations which

determine how gas flows, with shadow prices b. And the key variables, in our

simplified LP formulation, are the pressures, ptn, which (with volumes fixed)

effectively measure the mass of gas available at each point in the system, and qtn,
measuring the flow rates between adjacent locations. Thus we must consider the

dual equations associated with these variables. We first discuss the impact which

simple limits on flows through space and time would be expected to have, as in the

case in a market for stored water, for example. We then discuss how these results

will be affected by terms arising from the Bernoulli equation and velocity limits, so

as to produce pricing effects which may not be immediately intuitive.

First, gas prices will vary over time. If gas was being stored in a static fashion,

like water in a reservoir, then we would have a simple equation linking the price of

gas in successive periods to the shadow prices on the upper/lower storage bounds.

That is, the price of gas stored in the cell would be the same in each successive

period, unless a pressure (i.e. storage) limit was binding. Conversely, an upper

(lower) mass/pressure limit would be binding if the price for gas in the next period

was higher (lower) than in the current period, giving the system incentives to

maximize (minimize) gas carried forward. Note that Eq. 1 is really only a conve-

nience, allowing simplification of some of the equations. Simplistically, each unit

of pressure in pipe cell n implies GLn units of mass there. Thus, dividing by GLn

converts prices associated with pressure in cell n, (ft

n
and �ft

n), to be compatible

with prices associated with mass variables for that cell (mtn from the mass balance

equation). So, in this simplified model, the price (mtn) for injected gas (y
t
n) would be

inferred from the following equation, describing the way in which those prices

evolve over time:

mtn ¼ mt�1
n þ ft

n
þ �ft

n

� �
Ln= G : ~ptn (26)

Second, gas prices will also vary over space. Simplistically, we might expect the

price of gas moving through the pipe to be the same in each successive cell, unless a

flow limit is binding. And we might expect an upper (lower) flow limit to be binding

if (and only if) the price for gas in the next cell is higher (lower) than in the current

cell, giving the system incentives to maximize (minimize) gas flowed forward. This

would produce inter-nodal pricing impacts analogous to those arising in electricity

markets. But we do not have (mass) flow limits, per se, in this formulation, only

velocity limits in (14b), and a “friction” term in the simplified Bernoulli (Weymouth)
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equation (7f) which slows flow, but does not ultimately limit it. And the gas “stored”

at one time and place also influences the rate at which gas flows to other places, over

time. Thus Eq. 26 is too simplistic. To develop a more accurate representation, of the

way in which these pressure relationships affect prices, we first eliminate mass, m,
from the formulation, by substituting (1) into Eq. 4,14 to get:

LnG ~ptþ1
n ¼ LnG ~ptn þ qtn � qtnþ1 þ ytn : mtn (6b)

This leaves us with two sets of pressure/quantity variables in the formulation,

one for cell endpoints and one for cell midpoints. In the dual, there will be separate

“pricing equations” for each set, but the prices will be linked by the shadow prices

on the equations which, in the primal, define the relationships between midpoint

and endpoint variables, i.e. (2a) and (5a). Since both midpoint and endpoint

variables appear in those equations, their shadow prices appear in pricing equations

for both types of variable.

First, inter-locational price interactions are primarily determined by the dual

equations for the flow variables. Because the endpoint flow variable, qtn, actually
appears in the mass balance constraints for cells n and n�1, and also in the flow

averaging equation for both cells (5a), the corresponding dual equation (27) relates

the prices on all four of those constraints. But we also have pricing equation (28),

for the midpoint flow, (~qtn), which appears in the Bernoulli equation (7f), and the

cell velocity bounds (14b). And (28) can be substituted into (27) to give Eq. (29).

mtn ¼ mtn�1 þ ð�tn�1 þ �tnÞ=2 : qtn (27)

�tn ¼
X
k

btnk þ �wtn þ �wtn

 � !

: ~qtn (28)

mtn ¼ mtn�1 þ
X
k

btn;k þ btn�1;k

� �
þ �wtn�1 þ �wtn�1 þ �wtn þ �wtn

 !
2= :

qtn

(29)

This equation tells us that the price of gas in cell n reflects the price of gas in cell
n�1, upstream, plus the implied cost of moving gas from cell n�1 into cell n. That
cost is determined by the shadow prices on constraints limiting flows between

adjacent cells. Since the mtn prices are for cell midpoints, the price difference is half

determined by conditions in each cell. The friction term in the Bernoulli equation

(priced at btn) has a pervasive effect in terms of limiting and slowing inter-cell

14 And also in Eq. (21), for t ¼ T + 1, but that is not relevant here.
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flows.15 The (velocity) flow limits can also play an important role, if binding. If the

upper flow limit binds, �wtn will be positive, and the value of gas in the downstream

cell will be higher than in the upstream cell. But if the lower limit binds (typically at

zero) downstream gas will be worth less than upstream gas, and this change can be

quite abrupt. This may be a proper reflection of the situation, if reverse flow is

physically blocked by a check valve. Otherwise the model solution may not be

physically feasible, because there is no way to physically stop flow from reversing,

and alternative solutions should be explored, with flow restricted to be in the

opposite direction.

Second, inter-temporal price interactions are primarily determined by the dual

equations for the pressure variables.16 Because the endpoint pressure variable, ptn,
actually appears in the Bernoulli constraints for both cells n and n�1, and also in the
pressure averaging equation for both cells, the corresponding dual equation (30)

relates the prices on all four of those constraints. But we also have a pricing

equation for the midpoint pressure, (~ptn), which appears in the pressure averaging

equation (2a), and in the pressure and velocity bounds (13a) and (14b) for the

midpoint of cell n. So the prices for those constraints appear in the corresponding

dual equation (31), which can be re-arranged and re-scaled, to give equation (32),

describing the way in which the price of gas (mass) in cell n evolves over time.

ðct
n þ ct

n�1Þ 2= ¼
X
k

Ft�n�1;kp
t�
nk

h i
btn�1;k � Ft�nkp

t�
nk

� 	
btnk

� �
: ptn (30)

ct
n ¼ G Ln½ �mtn � Ln½ �mt�1

n þ Vt
n

� 	
w
t

n
þ Vt

n

� 	
�wtn

� �
� ft

n
þ �ft

n

� �
: ~ptn (31)

mtn ¼ mt�1
n þ ft

n
þ �ft

n

� �
� G Vt

n

� 	
wt
n
þ Vt

n

� 	
�wtn

� �
þ ct

n

n o
GLn= : mt

n (32)

The first pair of shadow prices in { } reflects the impact of pressure (storage)

bounds in period t, as for the hypothetical simplified model discussed above. The

middle pair of terms in { } reflects the fact that having more gas in a cell increases

the pressure and hence, for a constant velocity, the rate at which gas (mass) can flow

through the cell. If either velocity limit (Vt
n,V

t
n) is binding then, it will have a non-

zero shadow price (wt
n
,�wtn). If the lower velocity limit is only used to prevent flow

reversal, Vt
n will be set to zero, so that term disappears from this equation, so that

constraint plays no role in determining inter-temporal price differentials. Its shadow

price, wt
n
, may still contribute to inter-locational price differentials, though, via

15As noted earlier, the Zhou and Adewumi [41] equation (7d) effectively implies a small increase

to this term, and hence a small increase to inter-spatial differentials, but the pricing effect will be

small enough to ignore if the physical impact is small enough to ignore.
16 In principle, the time derivative terms in the full Bernoulli equation, (7), would create a further

inter-temporal link between prices. But we consider that influence to be small enough to ignore if

the terms themselves are small enough to ignore.
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Eq. (29) above. If the upper velocity limit is binding, the �wtn term will reflect a

benefit from increasing pressure so as to increase mass flow. But that strategy may

be constrained by an upper pressure limit in this cell, in which case the (�ft
n) term

associated with the upper pressure limit in Eq. 31 will rise to offset the �wtn term here.

If the binding pressure limit is in a different cell, its impact will be reflected by the

price of gas delivered to cell n rising high enough to make any further pressure

increase there unattractive.

The last term in { }, ct
n, summarizes the inter-temporal pricing impacts of the

Bernoulli equation, as determined by Eq. 30. The RHS of (30) reflects the way in

which higher gas pressure at the input end of cell n, ptn, speeds the flow of gas though

cell n to cell n + 1, while inhibiting the flow of gas through to cell n from cell n�1, in
accordance with the Bernoulli equations for cells n and n�1. Summation over k
captures the possibility that more than one supporting hyper-plane from the piece-

wise linearization may be binding. The LHS of (30) reflects the fact that higher gas

pressure at the input end of cell n, increases midpoint pressures in both adjacent cells.

Note that (30) involves prices for two adjacent cells, and we can not simply

substitute (30) into (31) to get a complete and explicit expression for the way in

which prices in cell n evolve over time without any reference to effects in other

cells. This reflects the chain-like way in which mid- and end-point variables, and

hence prices, are linked along the pipeline. But we can substitute (31) into (30)

though, and re-arrange to get:

ptn ¼ pt�1
n þ 2

X
k

Ft�n�1;kp
t�
nk

h i
btn�1;k � Ft�nkp

t�
nk

� 	
btnk

� �(

�G Vt
n

� 	ðwt
n
þ �wtnÞ þ Vt

n�1

� 	ðwt
n�1

þ �wtn�1Þ
� �

þ ft

n�1
þ �ft

n�1 þ ft

n
þ �ft

n

� �o
G LnþLn�1½ �=

(30a)

ptn¼ ðmtnLn þ mtn�1Ln�1Þ=ðLn þ Ln�1Þ (33)

We can think of ptn as the average price for gas in a “pseudo-cell” centered on the
boundary between cells n�1 and n, and running from the midpoint of one cell to the

midpoint of the next. This price is arguably the correct price for gas injected at a cell

boundary, and we can create a cell boundary at any point where gas is to be priced.

Then Eq. 30a gives an explicit expression for the way in which the price of gas

injected at that point evolves over time, in terms of the impact gas injected there has

in both adjacent cells. Other variants can be produced by manipulating the dual

equations and/or varying the primal assumptions. For example, we may impose

pressure or velocity limits at cell boundaries, rather than at midpoints. But, since the

cells modeled can be arbitrarily short, that kind of change does not fundamentally

alter the nature of the physical outcomes, or the pricing impact of these equations.

The corresponding price terms (ft
n and wtn) just appear in basically the same form,

but in Eqs. 27 and 30 rather than in Eqs. 28 and 31.
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Whatever variant of these equations is preferred, they define the key pricing

relationships, linking prices over time and space, to create a pattern of gas prices, all

driven by marginal offers and bids as discussed previously. The price of gas at any

time and place will not only reflect the value that gas will have when it is finally

delivered to the location at which it will be consumed, but also the indirect value it

may have (positive or negative) in terms of assisting or resisting the flow of gas to

other places, at other times, where it may prove to be more, or less valuable. The

Bernoulli terms mean that the price may vary from period to period, and from place

to place, even if there are no “local” or “immediate” pressure bounds limiting the

amount of gas that can be “stored” from one period to the next, and no (absolute)

flow bounds limiting the amount of gas that can be “moved” from place to place.

All other shadow prices in the dual (including shadow prices on initial and final

storage constraints, (20) and (21)), merely adjust to match that pattern.

This situation is analogous to that arising in electricity markets, where a flow

constraint on a single link will generate a distinctive “spring washer” price pattern,

first described by Ring and Read [33], implying price differentials across all links

involved in any loops in which that constraint is involved. These effects arise

because power flows according to the laws of physics, splitting across all possible

parallel paths in inverse proportion to their impedance. Prices must reflect the fact

that some part of any incremental flow will travel over the over-loaded circuit,

because it is not possible to “direct” flows to take alternative parallel paths avoiding

it. The gas system is similar in that, while valves and compressors give some degree

of control over how gas will flow, gas will flow though much of the system entirely

according to the laws of physics, not economics. Thus a single binding constraint, at

some time and place, will cause difficulty in delivering gas to various downstream

locations at, or over, various subsequent periods. Thus it will generate price

differentials across space, as in electricity markets, but also across time.

Price differentials could become quite extreme if, as sometimes happens,

extreme measures must be taken to keep the system operating. In Victoria, an

LNG stockpile is maintained near Melbourne, with stocks being gradually built up

over an extended period, so as to be available for release when required in order to

maintain pressures when demand is too high to be met by continuous supply

through the main pipeline system. The operation of that stockpile is optimized

outside the market, as is the operation of other storage facilities, such as the

Western Underground Storage Facility (WUGS). This gas is all purchased at

market prices, when they are relatively low, then re-sold at times when the marginal

value of gas, and hence the optimal gas price, must be very much higher, at the LNG

facility. Prices may be even higher at the critical time and place which actually

creates the need for such release, if that is not the LNG facility.

In electricity networks, constraint pricing effects are not the only possible

drivers of price differentials, though. If transmission system losses are modeled,

as in Alvey et al. [2], they will cause pervasive price differentials between all

locations, even when no constraints are binding. These transmission system losses

are not really analogous to the “friction loss” terms in the Bernoulli equation,

though. This is not a loss of gas, but a loss of energy, and its effect is to slow and
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delay gas delivery, rather than ultimately to limit it. This does represent a potential

barrier to the efficient and timely transfer of gas from producers to consumers, but

that will only imply inter-locational, or inter-temporal, price differentials in

situations where the delay, in combination with insufficient linepack in the right

part of the system, forces some other constraints, such as pressure or velocity limits,

to bind. When price differentials do occur, these terms, of themselves, typically

imply gradual change, as the cumulative effect of the Bernoulli equation on each

segment of the pipeline means that flow rates gradually decrease as distance

increases.

Compressor operation does imply gas losses, though, and these are accounted for

in Eq. 6c, in the Appendix. Thus the price of gas downstream from a compressor

must rise in proportion to the marginal gas consumption of the compressor. If

achieving the desired pressurization requires a compressor to consume 1% of the

gas passing through it, the compressor effectively converts 100 units of upstream

gas, at the upstream pressure, to 99 downstream units, at the higher downstream

pressure. So, if there were no other costs or constraints involved, they would have

the same total value, with the marginal value therefore needing to be (approxi-

mately) 1% higher on the downstream side. Abrupt price change can occur at

compressors where flow is constrained by a minimum or maximum flow limit,

though.

7 An Example

While the equations in the previous section allow us to infer how prices relate in

adjacent cells, and periods, we have not made, or seen, any systematic attempt to

determine, the variety of system wide price patterns that might emerge. But Annex

3 of Frontier Economics [11] presents some empirical analysis, based on the results

produced by the MCE of Pepper et al. [26] for a number of scenarios. That model

was developed as a pragmatic replacement for the original conceptual formulation

developed by Read and Whaley, and reported here. It ignores the time derivative

and kinetic energy terms included in the original formulation but, if these are small,

they will also have little impact on prices. While it is linearized in a different way,

the pressure/flow relationship employed in this model is essentially the same as that

in Eq. 7c above. This approximation has proved sufficient to produce a very good

approximation to physical gas flows in the system. Thus we believe the price

patterns produced by that the implemented MCE model to be indicative of the

kind of price patterns likely to emerge from any implementation of the fundamental

market design concept developed here. That is a nodal market based on an LP

representation of the underlying network realities, on a short time scale. Here we

discuss the price patterns produced for just one of the scenarios considered by

Frontier, as reported by Pepper [25].

Figure 2 gives a general locational overview of the Victorian Gas System in

terms of main pipelines and nodes. Figure 3, taken from Pepper shows the kind of
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price pattern that could occur in this system for a day in which a constraint binds.

Pepper notes that prices almost always decline to a flat off-peak value at around 10

PM, with some lag in the outer portions of the system. (Hence, prices after midnight

are omitted from Fig. 3). This behavior after the evening peak reflects the fact that

Fig. 2 Victorian gas system: network overview

Fig. 3 Victorian gas system example price pattern
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the intra-day linepack constraints are no long binding and the MCE only needs to

achieve a minimum system-wide linepack constraint by the end of the gas day. If

the optimization were changed to a 48 h optimization and the next gas day was also

constrained, this flattening of prices may not always occur.

The relatively high prices during this particular gas day stem from two underly-

ing causes. First, the system did not start the day from a position of unconstrained

equilibrium, but inherited a gas pressure/flow pattern which made it difficult to

meet the day’s requirements. This may be seen by the fact that the model assigns

differing values to gas in different locations, even at the start of the day. Second,

demand for gas during the peak period of the day exceeded the ability of the system

to deliver gas from the low cost supply at Longford, which was constrained by

production and gas processing plant capacity. Thus, in this solution, pressures were

expected to reach minimum allowed levels early in the evening peak period, at

Bendigo Junction and at other key points, such as the Dandenong City Gate (DCG),

towards the end of the evening peak period. Some higher cost supplies such as LNG

or stored gas are thus required to keep pressure at, or above, the minimum pressures.

Thus by 1 PM, the system is clearly struggling to get enough gas through to

Melbourne to cover requirements over the rest of the day. So prices rise over the

day, then collapse after the critical hour. Prices also rise at Longford, the main

injection point, but prices there fall earlier because gas can not reach the critical

areas in time to make any difference. Or, more exactly, the value of injecting more

gas at that place, in terms of maintaining a pressure differential to increase flow

through to the critical area by the end of the critical period falls gradually over

several hours as the end of that period approaches.

Iona is, in sense, at the opposite end of the system, at the end of the South-West

pipeline. But prices at Iona follow a similar pattern to those at Longford, presum-

ably because Iona also acts as a source from which gas can flow to Melbourne

within the critical period. Prices on this pipeline start falling earlier in the day,

though, presumably because extra gas at Iona will only have a positive impact on

Melbourne delivery if injected early in the day. Bendigo also lies at the end of a

pipeline, off the opposite side of the outer pipeline loop from Longford. But

Bendigo is not a source, and prices there follow a similar pattern to those at

Melbourne. Pepper [25] reported that there is a capacity constraint between

Melbourne (DCG) and Bendigo, restricting Bendigo gas availability during the

peak period. The Bendigo price drops sharply after 3 PM because changes in supply

or demand of gas at Bendigo no longer have much impact on the ability to meet

demand at Melbourne through to the end of the evening peak.

This fall below the end-of day value is much more marked for Springhurst, near

the neighboring state of New South Wales. There the price drops so early, and so

low, as to apparently exhibit almost the opposite of the Melbourne pattern, only

rising slowly to match the end-of-day price at the end. Pepper reports that gas is

actually flowing north, away from Melbourne, even when prices are higher in

Melbourne, at that time. As noted earlier, gas will flow in accordance with the

laws of physics and, where there is no valve to control flows, there is no reason why

that flow should necessarily enhance economic value. Exactly the same situation
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arises with respect to loop flows in electricity networks, where counter-price flows

are common.

In any case, it is not the price difference at any particular time that determines

optimality. The critical issue here is maximizing flow to the major load, at

Melbourne, over the critical period. Extra gas in the Northern pipeline, early in

the day, is actually assigned a similar value to Melbourne gas because the increased

pressure can inhibit northward flows during the critical period, thus allowing the

system to meet Melbourne requirements. After 3 PM, though, the value of extra gas

there actually falls below the end-of day value. This is because the impact of one

unit of additional supply, or reduced demand at Springhurst, requires a reduction in

the flow which the model achieves by reducing pressure at the supply end of that

pipeline, thus impacting the ability to meet demand on the Northern section of the

pipeline.17

8 Issues for Market Design and Implementation

8.1 Non-physical Flows and Flow Reversal

The discussion of convexity in Sect. 5 glosses over one significant point which can

prove troublesome in implementing this kind of model, whether or not it is used

for market clearing. We focused on the convexity of the LP feasible region. But

(7c) is an equality, not an inequality, and the actual physical flows are confined to

lie exactly on the boundary defined by that equation, rather than within the region

bounded by it. As with any nonlinear equation, the set of points it defines can

never be convex, even if the equation defines the boundary of a convex set. So the

physical feasible region for this problem is definitely not convex. Still, piece-wise

linearization is often used to model this kind of situation in LP models, including

those of Thomasgard, Midthun and others. This does not create a problem so long

as the objective function implies that points on the boundary are preferred

to physically infeasible interior points. It will break down, though, if that is not

the case.

A similar situation arises when a piece-wise linear representation is used to

model quadratic losses for electricity markets, as in Alvey et al. [2]. This creates a

convex LP feasible region, and solutions will lie on the appropriate boundary

provided losses are economically undesirable. This is almost always the case, but

Ring and Read [33] note that a switch must be made from piece-wise linearization

17 In this case, though, the effect is at least partly due to the fact that this section of pipeline is

represented with one pipeline segment. If the representation of the pipeline to Springhurst was

divided into multiple pipeline sections, the MCE would be better able to account for the dynamics

of the flow relationships and these prices would not fall so far.
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to successive linearization if the model determines that the optimal electricity price

at some point in the network would be negative. This can actually occur, in

situations where increased load (or losses) would relieve pressure on constrained

lines in a loop. And that will make it seem desirable for the optimization to propose

“solutions” which are not physically feasible, because they imply losses greater

than would actually occur, for the specified flow level. Analogous situations could

occur here, if the value of having more gas pressure, or a greater pressure differen-

tial, becomes negative at some time and place, most likely because it forces gas to

flow away from where it is needed, and there are no check valves available to stop

that occurring.18

In practice, this situation is handled by switching to successive linearization, as

discussed by Pepper et al. [26]. But a closely related situation occurs when the

model determines that flow reversal would be desirable. We have restricted

velocity, and hence pressure differentials to be positive in a defined direction,

partly because the Weymouth equation is not convex if extended into the range

where the inlet/outlet pressure difference, and hence the flow direction, reverses.

This gives us a convex optimization problem, with a unique optimum. There are

cases, though, in which a quite different alternative optimum could be considered,

with the flow on some pipe segments reversed. Gas could be compressed into a

dead-end pipeline segment, for example, and then allowed to flow back out to

meet peak demand. And the existence of a ring structure in the DTS suggests that

some locations could be supplied sometimes from one direction, and sometimes

from the other. In many cases this may not matter, in the sense that the alternative

strategies do not greatly affect economic value. But the gas system operator may

face some real “integer” choices between significantly different operating

strategies.

Ideally, an integer optimization, such as that in Martin et al. [19], could be

employed to ensure that the true optimum is found. In reality, the plausible range of

operating strategies is quite restricted, at least for this relatively simple system. If

the model is observed to force some flows to their lower limits, the operator may

make integer decisions with respect to valve and compressor settings, or just with

respect to desired flow direction on certain pipeline segments. Given those

decisions we can set the limits in (14b) so as to maintain minimum flows in the

desired direction, and re-solve using the convex linearization valid for that flow

direction but that does mean that the prices determined by the model potentially

depend on some high level strategic choices made by the operator, and that may of

significant concern, from a participant perspective.19

18 One could imagine this happening in a more extreme case of the Springhurst example above.
19 It has been suggested, though, that at least some of the observed price effects could have resulted

from sub-optimal compressor settings and from inter-temporal constraints on the bids such as

overly constrained hourly ramp rates or minimums on hourly injection quantities.
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8.2 Rents and Cost Recovery

The existence of price differences, over both space and time, means that there will

be a potentially significant “settlement surplus” remaining after all accepted bids

and offers have been cleared at the prices produced by the LP optimization. This

settlement will be the sum of “rents” collected on all binding constraints. Even

when constraints do occur, though, differentials will typically still be small if those

constraints can readily be worked around, for example by adjusting compressor

settings. Running compressors creates what is effectively only a small loss of gas

from the system, and implies equally small differentials, as discussed earlier. If the

gas loss factor were constant, this price differential would be just enough to pay for

gas losses, thus making no contribution to recovering the cost of the compressor

itself. Since the price difference across a compressor reflects marginal losses, and

compressor loss functions are convex (see [26]), rents will be generated equal to the

price of gas at that point in the network, times the difference between marginal and

average losses.20 But this rent is also small.

Larger price differentials, and hence larger rents, will arise when compressors

reach their throughput limits, and/or flows are limited by the other constraints

discussed in Sect. 6. As discussed there, a single constraint, binding in a single

period, may generate price differences between various locations at various times,

and between various times at various locations. Indeed price differences can arise

even when no pipeline segment is constrained at all, in terms of absolute flow

capacity. So, rent will be collected across a great many links, and periods, where

no constraint is binding. This is analogous to the situation in electricity markets,

where a single line constraint in a loop will generate price differences, and hence

rents on all lines involved in that loop. In both cases, though, the total rent

generated by each binding constraint must equal its RHS value times its shadow

price.

In the electricity market literature, there has been much debate about the extent

to which nodal price differentials, and rents, could or should signal, incentivize, and

perhaps fund, transmission network expansion. The desire to signal and incentivize

gas network expansion was a significant consideration in developing this gas

market framework, too. But we should caution against assuming that rents derived

from inter-nodal, or inter-temporal price differences will prove sufficient, of them-

selves, to fund all optimal network enhancement. If we were to solve a joint

operation/expansion optimization, assuming compressor and pipeline, capacity to

be continuously expandable with convex costs, we would find an optimum at which

the marginal cost of expansion equaled the marginal rent assigned to compressor

capacity, by the market clearing prices, on average in NPV terms.

20 Analogously, a quadratic loss function for electricity transmission implies that marginal losses

are always twice average losses, thus generating rents equal to half the loss-induced price

differential, even for un-constrained transmission lines.
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But neither pipeline nor compressor capacity can be expanded continuously.

And, rather than being convex, capacity costs are likely to exhibit significant scale

economies, just as for transmission lines. In that case, Read [29, 30] showed that

optimal capacity expansion policy implies that the line capacity should be sized so

that over its lifetime, it recovered just enough rents to cover the marginal cost of

making the line larger, given that a decision had been made to build the line. Put

another way, if we approximate transmission capacity costs as having a fixed cost

component, plus a variable cost per capacity unit equal to the marginal cost of

building more capacity (at the time of construction), then the rents implied by

optimal market prices should only recover the “variable” portion, not the “fixed”

portion. For transmission lines, Read calculated that this marginal cost component,

and hence direct cost recovery from nodal price differentials, was unlikely to be

more than 30% of the total cost in an optimally expanded system, while empirical

evidence from New Zealand suggested it could be as low as 10% in practice.

Rudnick et al. [34] reached similar conclusions. Depending on the strength of

scale economies for gas pipeline networks, and compressor equipment similar

conclusions are likely to apply. This is not to say that a theoretically optimal

transmission expansion/pricing regime could not be driven by these spatio-temporal

price differentials. But that regime must rely on forward contracting, prior to

expansion, rather than simply on collecting rents from the expanded network, as

outlined by Read [30]. In practice, though, such a regime has proved difficult to

establish, and supplementary funding, e.g. from industry levies or access charges, is

still likely to be required.

8.3 Hedging

One major factor inhibiting further development of the gas market towards a nodal

pricing paradigm is that participants fear that they could be exposed to significant

price differentials, and not be able to purchase any form of insurance to cover the

implied trading risks. Following the electricity market analogy, the development of

hedging instruments similar to the “Financial Transmission Rights” (FTRs) devel-

oped by Hogan [15] gas been proposed. But a key requirement for an FTR regime to

work is that FTRs not be issued beyond what the system is (expected to be)

physically capable of delivering. Otherwise, Hogan shows that a revenue adequacy

problem arises, because the rents generated on the binding constraints will not be

sufficient to support the payments demanded by FTR holders.21 Conversely, if the

flow pattern corresponding to the set of all FTRs held by participants lies within the

convex feasible region of the market clearing formulation, the implied “FTR flows”

21We do not expect “revenue adequacy” to cover the cost of gas actually consumed by

compressors, any more than the cost of actual losses is covered for electricity markets. In both

cases these costs must be face by traders as a residual differential, or covered in some other way.
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on the lines which turn out to have binding limits in the spot market clearing

solution must be no more than their capacity. The rent required to support FTR

payments matches the FTR flows times the shadow prices on those constraints,

which must be no more than the rent collected as settlement surplus, that as

determined by the full RHS capacity of the binding limits, times their respective

shadow prices.22

The situation is essentially the same for the gas market formulation described

here, except that the “transport network” allows gas to be transferred over both time

and space, and constraints may thus be on flows from one cell to another, or on one

time period to another.23 Ignoring the possibility of line-pack, what could clearly be

supported would be FTRs with a defined delay time, hedging the difference

between the gas price in one cell and “start” period and that in another cell in that

start period, plus a specific delivery delay. If no constraints bind in such a way as to

(directly or indirectly) limit that flow we expect the two prices to be identical. But

otherwise, just as for Hogan’s electricity model, the rent collected on the flow

limiting constraints should suffice to provide hedging for the volume that can be

physically transported, with that delay.

Alternatively, we could decompose each “delayed flow” FTR into two

components: An instantaneous inter-locational FTR, as in electricity markets, and

a locationally specific inter-temporal FTR, hedging between the prices at two

different times, for the same location. Ignoring line-pack, neither of these FTR

components needs to be physically feasible, on its own. The situation is not really

very different from that arising in an electricity market for which FTRs are all

expressed with respect to some reference hub. In such a market an FTR from A to B

can be decomposed into an “A-to-Hub” component and a “Hub-to-B” component.

But the transmission system does not need to be able to support the requested

volume of flows from A to the hub, or from the hub to B, only the net flow pattern

after all requested flows have been accounted for. In the gas market case we can

think of “cell j at time t” as being analogous to a hub. Thus we can define and issue
instantaneous inter-locational FTRs, from “cell i at time t” to “cell j at time t”,

22 This holds even though a single binding constraint may generate price differentials, and hence

rents, across all lines involved in any loop in which it is involved. One way to see this is to solve

the simultaneous equation system defining power flows in terms of net nodal injections so as to

express the line flow directly in terms of net nodal injections. Since a binding constraint holds with

equality, the total rent collected on the RHS side of the constraint will be broken down into a set of

“nodal rents” on the LHS of the constraint. These nodal rents correspond to the rent collected on

that part of a notional flow from the node to a reference node which passes over the constrained

line. This representation of the constraint rents making up the settlement surplus can be used to

construct constraint based “flow gate rights”, as in Chao et al. [5], or classic FTRs, as in Hogan

[15].
23 Convexity issues will arise with respect to “integer” decisions, such as valve or compressor

settings, and possibly flow directions. But that is also true with respect to the “integer” decisions,

such as breaker or transformer settings, determining the configuration of electricity networks. In

both cases any issuer of FTRs must take care to assess the feasibility of supporting those FTRs

across the range of network configurations that might apply on the day.

106 E.G. Read et al.



provided we also define and issue locational inter-temporal FTRs from “cell j at
time t” to “cell j at time t + delay”. Once issued, such instruments could not be

traded independently, but they could be traded using a market clearing optimization

that guarantees simultaneous feasibility.

The gas system can support a much wider range of FTRs than this, though,

because gas stored as line-pack can typically be released over a wide range of

intervals. Thus there is no fixed delay between the time at which gas is injected at i,
and the time it is extracted at j. So, for convenience, we could define and issue

instantaneous inter-locational FTRs, from “cell i at time t” to “cell j at time t”, and
we could also define and issue a wide variety of locational inter-temporal FTRs

from “cell j at time t” to “cell j at time r”. Here r may be greater than t, but it could
be less than t. In other words it may be possible to extract an incremental unit of gas

earlier in the day, provided we know that it will eventually be replaced by a unit

injected at time t, and arriving some time later, and that no constraints will actually

be violated in the meantime. In particular, instantaneous “trade” will often be

possible, even though instantaneous “transport” is not.

The feasible range of such transactions will be limited by binding constraints on

pressures or flows, in which case the system will need to incur the costs of re-

dispatching other injection, extraction, or compression, in order to make this

transaction possible. But the marginal cost of such re-dispatch is exactly what the

inter-nodal and inter-temporal price differences measure. And the shadow prices on

the binding constraints that determine the inter-nodal and inter-temporal price

differences will also generate the rents required to support any simultaneously

feasible pattern of inter-nodal and inter-temporal FTRs. More generally, the rents

should support any simultaneously feasible pattern of mixed spatio-temporal FTRs,

whether or not they are decomposed as in this discussion.

To date, difficulties in conceptualizing hedging arrangements have proven to be

a significant deterrent to introducing greater spatio-temporal price differentiation

into this relatively small market. But the mathematics of hedging in this kind of gas

market seem closely analogous to that in nodal electricity markets. It may seem

complex to determine simultaneous feasibility, over both space and time, but all

that is required is to notionally clear the proposed FTR trades through a version of

the spot market clearing optimization, just as in electricity markets.

9 Experience and Conclusions

In principle, the spatio-temporal prices determined by the formulation discussed in

Sect. 6 could be used to coordinate the market at all times, and particularly when

congestion creates significant spatio-temporal price differentials. It should be said,

though, that the nodal market paradigm described here has not revolutionized

markets to anything like the same extent as the analogous electricity market design.

This is partly due to inherent differences between the sectors. Valves and

compressors make gas flows relatively more controllable than electricity flows,
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and limit the potential for troublesome “loop flow” effects of the type that at least

partially motivated electricity market reform in the US, for example. Thus tradi-

tional market paradigms may be relatively more effective in the gas sector than they

were in the electricity sector. Nor is there so much need for absolute real-time

coordination.

In this particular case, the net volume traded between participants is also not

very large, since much of the gas is effectively transported on behalf of vertically

integrated participants, who inject their own (contracted) gas at one location, and

extract it at another. Still, Pepper et al. [26] describe a detailed LP optimization

model that does calculate spatio-temporal prices as above, and the dispatch

schedules associated with those prices are used. But they also describe how actual

trading prices are determined using a simplified version of the model, in which the

gas system is modeled like a simple “tank”. That is, gas injected at any location, at

any time during the day, is assumed to be able to supply demand at any other point,

and time of day. Intra-day price differentials arise because the tank model is re-run

several times during the day, but a single gas trading price is calculated each time

the model is run for (the remainder of) each trading day.24

If no transmission system constraints ever bound, the tank model would always

suffice to clear the market. Congestion certainly can occur in Victoria, and give rise

to significant pricing effects when it does, as in the example above. The tank model

under-estimates the cost of operating the real market at such times, and determines

a price which is not consistent with the costs of all suppliers or consumers.

Commercially, this is dealt with by “uplift” payments to compensate participants

mis-dispatched relative to the daily gas price. But Frontier [11] found that this did

not happen often enough to justify moving towards full inter-temporal pricing

framework developed here. And we understand that subsequent network

developments may have reduced congestion, and averted the need for further

market development along these lines.

But the reason the industry has not proceeded further with a more granular

market design is definitely not because the experimental evidence suggests that

optimal market-clearing prices would always be the same at all times and all

locations. On days when constraints bind, price differentials would appear to be

of a similar order of magnitude to those found in electricity markets, over both

space and time. But that raise a different barrier to further development, because

participants are reluctant to expose themselves to the risk implied by potentially

significant spatio-temporal price variations that may not well understood, and can

not be hedged without development of FTR instruments for which there is no

internationally established theoretical framework, or precedent. This concern is

24 Originally, the market design included end-of-day linepack trading, thus including a version of

(22) in the objective function. However, the concept was dropped, due to concerns over price

manipulation, and because the feasible end-of-day target linepack range was considered too small

and sensitive to be managed by participants.
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particularly strong when price variations may be significantly influenced by

decisions made by the gas system operator, with respect to compressor settings, etc.

We would argue that the situation is not really very different from that in the

electricity sector, where radically different pricing patterns can arise depending on

the system operator’s decisions about which circuits will operate, and how they will

be connected, in each dispatch interval. But there is now significant experience with

electricity markets, and protocols have been developed which tend to restrict

operator freedom, but deliver benefits to the sector as a whole. A similar process

may be expected to evolve in gas markets. Even without full market implementa-

tion, the pricing information generated by the model gives a clear measure of the

economic costs being imposed by constraints, and the value that might be released

by investment in equipment and/or operating practices that could relieve those

constraints. But the process of developing appropriate protocols could be contro-

versial and expensive, and possibly not worthwhile in a small gas market such as

this.

At this stage, then, the Victorian gas market does not actually employ the full

potential of the formulation described here, and the success of the Victorian gas

market development, per se, provides only limited evidence with respect to the

potential value of an LP-based market-clearing approach. That market has not fully

exploited the paradigm’s potential, partly due to its small size, degree of vertical

integration, and relative lack of congestion. Many markets trade a much greater

volume and value of gas than Victoria, though, and congestion seems not uncom-

mon. And, at least in Victoria the lack of any international experience with, or

literature on, this type of market structure in the natural gas industry has been a

major factor inhibiting further development of a market based on the nodal pricing

paradigm. Thus the major intended contribution of this paper is to report that the

concepts have actually been developed, tested, and to some extent applied, in the

context of a market which has now operated successfully for over a decade. This

demonstrates that it is not too difficult to develop a spatio-temporal MCE formula-

tion for a gas market. And experience with that model also reveals the potential for

price differences large enough to imply significant potential for economic gains

from trading. Thus we consider the paradigm developed here could well prove more

fully applicable in larger and more diversified markets, elsewhere.

Just as importantly, there is an increasing interest in the application of so-called

“smart” markets [18] to a wide variety of situations. Many of these situations

involve storage of some “commodity”, such as water e.g. [23, 28], or some form

of pollution [27], within a “transportation system”, where it may, or may not, be

fully or partially controlled by participants and/or in some centralized fashion. This

gas market example seems highly relevant to all such developments, because all

such markets are likely to exhibit broadly similar spatio-temporal price patterns to

those found here, and may need to overcome many of the same conceptual and

practical challenges before successful implementation can be expected.

In particular, the way in which stock in transit and/or storage needs to be priced

represents a significant step beyond established electricity market practice. And the

need to account for the possibility that, as perceptions change, stock will need to be
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re-priced, perhaps radically, raises significant questions about the validity of deter-

ministic formulations of the type discussed here. Unlike electricity markets we can

not rely on participants to manage this in-transit stock, and the relationship between

current and future price is determined by the “hard” mathematics of physics and

duality, not by trading in futures market reliant on “softer” participant judgments.

Thus it may be that market-clearing concepts will eventually have to be developed

further, to incorporate stochastic formulations.

Appendix: Modelling Junctions, Fittings, and Compressors

Pepper et al. [26] shows discusses how to deal with several complications ignored

in our simplified formulation via simple extensions of the approaches discussed in

Sect. 5. Compressors play an important role in many gas systems. By compressing

gas at one location they not only allow increased linepack storage, but increase

pressure differentials, thus increasing gas flows from one location to another.

Obviously, gas compression requires energy input, and in the Victorian system

the compressors are themselves powered by gas drawn from the gas transport

system. Although compressor fuel use is relatively low, it may be modeled as

follows. A gas powered compressor is driven by a proportion of the gas that

flows through it; increasing throughput in a pipe requires an increase in the

compressor pressure to offset the dynamic losses down the pipe. Increasing Dp
necessitates speeding up the compressor and hence increases fuel consumption. For

centrifugal gas compressors a quadratic equation relates the change in head (pres-

sure), Dp, volumetric flow at the compressor inlet qic, and impeller speed, RPM, as

follows25:

Dp ¼ C1 � ðqicÞ2 þ C2 � qic � RPM þ C3 þ C4 � RPM2 (34)

We can not use this equation directly in the formulation, though, because RPM is

not an LP variable and the equation in this form is nonlinear. Still, we can

reasonably assume that compressor operation rules will have been externally

optimized and that optimal operation will imply equations giving the minimum

gas consumption required to achieve any desired pressure/flow trade-off. Read and

Whaley [32] present a number of detailed equations and steps to determine this loss

in gas mass, during compressor operation. Basically, if we know the desired flow

rate and pressure increase across the compressor, we can calculate the required

running speed of the compressor, in RPM, from which we can determine the rate of

fuel usage, and hence the actual mass “lost” in the compressor. This loss, which is a

function of volumetric flow and pressure change, is the cost associated with

25 Constants C1�C4 are normally stated by compressor manufactures as standard data.
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pressurization of the gas in the downstream section of pipeline. So mass conserva-

tion must be revised to account for the fuel usage, Loss, represented as an effective

reduction in mass flow on the discharge side of the compressor:26

mtþ1
n ¼ mt

n þ qtin � qton þ ytn � Losstnðqtin ;DptnÞ (6c)

Ultimately, ignoring commitment of compressor units, this loss is the only

specific aspect of compressor operation that needs to be included in the market

clearing formulation. The compressor loss term in Eq. 6c) can be reasonably

approximated by a convex differentiable function over a convex feasible operating

region. Thus it can be linearized as a function of the LP variables, i.e.qtn
, ptn

, ptin and
pton . Apart from this, and the fact that pressure rises, rather than falling in the

direction of flow, compressors can be treated like other “fittings”.

An implementable solution for a real pipe network must also generalize Eq. 6 to

represent mass flow balance in situations where multiple inflow pipes of varying

diameter and length connect to a similar variety of outflow pipes. Since the mass

flow rate is equivalent on each side of “fittings”, such as valves, tees and bends, flow

through them can be determined by the pressure difference between the two

adjacent cells. But constraints and variables may be required to represent pressure

drops of specific forms implied by particular fitting types. Some valves basically

increase the friction factor in the Bernoulli equation, for a short pipe segment,

with a closed valve implying infinite resistance. Pressure reducing valves are

designed to reduce pressure to a specific level. This can be enforced by an upper

pressure limit, but a slack variable is also required to represent the drop from the

upstream pressure level to the specified level. Or a ratio constraint can be used to

represent proportional pressure change as may occur when pipelines of different

sizes are joined.

For proportional changes, injecting at a junction increases pressure in both

adjacent cells, and produces the same kind of pricing patterns. A more detailed

formulation, modeling both input and output pressures and assuming constant

pressure ratios at boundaries, produces essentially the same pricing equations.

In (30), though, the weights on the price terms (b and c), for cell n�1 now involve

the cell boundary pressure ratio. Pressure reducing valves create a pressure discon-

tinuity, though, and a pricing discontinuity can be expected. But, while a more

complex formulation may make the pricing relationships more difficult for

participants to understand and verify, LP optimization will always ensure that

price relationships correctly reflect physical realities, to the extent that they are

represented in the LP.

26 In this simplified representation we are assuming that compressors can be dispatched continu-

ously right down to (near) zero, with no “commitment” costs, penalties, or restrictions. This allows

us to form an LP representation with a convex feasible region. In reality there is an integer “unit

commitment” problem here, as discussed by Pepper et al. [26].
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