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Abstract 

This thesis investigates the application of marginal cost based spot pricing 
techniques to the short run coordination of decentralised, and potentially competitive, 
electricity markets.  A Dispatch Based Pricing philosophy is proposed which requires that 
the dispatcher of a power system determine spot prices which are consistent with both the 
observed power system dispatch and the offers and bids issued by market participants.  
Whereas previous research has involved determining prices corresponding to an optimised 
power system dispatch, Dispatch Based Pricing is more flexible, requiring no such 
optimality assumption while generating incentives which encourage efficient dispatch.  
Pricing relationships are formed, and the resulting incentives analysed, by applying duality 
theory to mathematical programming formulations of the dispatch problem.  

A detailed theoretical description of a dispatch based pricing model, based on an 
Optimal Power Flow formulation, is presented.  This model is an extension of the ex post 
pricing model of Hogan (1991).  As well as presenting a more general representation of 
dispatch variable relationships, we demonstrate the underlying mathematical relationships 
which drive the economic interpretation of this model.  In addition, we explore the 
behaviour of transmission flow constraints in cyclic networks, and describe the 
modifications needed to price for security requirements consistent with current operational 
practices in New Zealand. 

We explore the extension of Dispatch Based Pricing to situations beyond the scope 
of the Optimal Power Flow problem, and even to situations which are strictly incompatible 
with a pure marginal cost based analysis.  We develop a "best compromise" pricing 
approach which, for (seemingly) economically inconsistent dispatches, minimises the side 
payments required to account for the difference between the market clearing spot prices 
and the offers and bids of the market participants.  We develop and discuss methods for 
determining dispatch based prices which are consistent with primal inter-temporal 
constraints, uncertainty, and integer variables.  
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Chapter 1 

Introduction 

In recent years there has been growing interest in competitive and deregulated 
electricity markets.  This reflects both a political interest in efficient resource usage and 
industry frustration, particularly in the United States, caused by imposing overly simplistic 
regulations on complex power systems.  Traditionally, the difficulty of coordinating power 
systems has limited the ability of power systems to be operated in the decentralised manner 
required for deregulation and competition.  However, Ruff (1992) observes that while 
large monopolies have traditionally been encouraged so as to take advantage of economies 
of scale, these economies are actually mainly due to more efficient trade and coordination, 
and that modern technology can now capture most of these advantages in smaller 
generating units.  This makes it possible, in principle, to achieve market decentralisation, 
at least in generation, allowing an increase in the scope and efficiency of the market by 
capitalising on the economies of trade and innovation.  This does not mean that no 
regulatory control should be imposed on the system, but the duties of the regulators should 
be restricted to those aspects which cannot be efficiently managed purely by the market.  
In particular, transmission grids are natural monopolies, and should therefore be 
regulated1. 

Decentralised power systems have no central, all powerful, controller.  Rather they 
involve independent entities all pursuing their own goals2.  A central coordinator, or 
dispatcher, may still exist, but is constrained to operate the system in a manner which is 
consistent with the goals of each entity.  Power system decentralisation does not 
necessarily imply competition or free market access, as the management of the generating 

                                                 

1 This does not mean that the transmission grid plays a secondary role.  Indeed, we agree with the 
opinion expressed by Tabors (1994) that the transmission network, as the provider of the conditions 
required for competitive trading, should be viewed as the fundamental physical component of an 
electricity market, rather than the generating stations or loads. 

2 Nor is a decentralised power system necessarily "optimised" by one comprehensive model.  Indeed, 
during New Zealand's shift from a centralised power system to a decentralised system Read (1995) 
has observed the decline of "all encompassing" market models in favour of less comprehensive 
models which primarily optimise the factors under the control of the individual market players that 
operate them. 
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stations in a monopolistic power system can also be decentralised.  However, in general, a 
competitive electricity market is assumed in this work. 

This new structure has created a need for an efficient transmission pricing regime, 
and particularly one which addresses the externalities which power system transactions 
create (Hogan, 1992).  Due both to the non-linearities inherent in power system operation, 
and the need to differentiate between physical operation and financial transactions, three 
basic mechanisms are required for efficient market operations, these being network fixed 
cost recovery, a short run marginal cost spot pricing regime, and financial hedging 
contracts between market participants (Hogan, 1992, Read and Ring, 1995d).  The short 
run marginal cost spot pricing regime is related to the problem of the short run 
coordination of a decentralised power system.  This relation arises because the primal 
problem of actually determining how each generating unit or load in the system will 
operate corresponds to the spot pricing, or dual, problem which involves determining the 
economic value to the system of the net contributions of the generating units and loads.  If 
the dual and primal problems are fully consistent with one another, then either can be used 
to coordinate the dispatch.  It follows that, in a decentralised market, a dispatcher can 
coordinate generation and load through the use of spot pricing mechanisms, rather than by 
dictating how each market participant should operate.  The fact that demand decreases with 
increasing price, while generation increases3, linked with the fundamental power system 
requirement that total generation matches consumption, implies limits to the range of 
prices that can be considered by the dispatcher. 

The aim of this work is to extend spot pricing theory so as to increase its 
compatibility with, and applicability to, actual markets for power.  This involves 
increasing the generality and robustness of the theory, while providing a better 
understanding of the behaviour of prices, and of the forces which drive that behaviour4. 

In many instances, the short run marginal cost pricing theories described in the 
literature have been designed for usage by utilities which are dominant in their local 
market.  We, however, focus on a pricing systems which can be applied across a national, 
wholesale market.  Past works in this area, particular those of Schweppe et al. (1988) and 
Hogan (1991, 1992), have approached the pricing problem from a number of different, but 

                                                 

3 Assuming rational, competitive and unconstrained behaviour. 

4 While a detailed understanding of power system operation and economics is not assumed in this 
work, the interested reader might wish to refer to Crew and Kleindorfer (1979), Joskow and 
Schmalensee (1983), Wood and Wollenberg (1984), Schweppe et al. (1988), US Congress, Office 
of Technology Assessment (1989), or EPRI (1995).  
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related, philosophical standpoints.  We explore these approaches and identify some 
unifying concepts.  We use a mathematical pricing model to highlight a number of 
relatively simple economic relationships between the power system dispatch and the prices 
which stem from it.  We also demonstrate that strict adherence to the ideal of "optimality" 
is not crucial when determining prices.  These ideas should go some way towards 
increasing the applicability of short run marginal cost pricing techniques to actual 
electricity markets. 

While proposing a philosophical approach to spot pricing, we also demonstrate these 
ideas in the context of a model developed for the New Zealand electricity system.  This 
model was developed for Trans Power (NZ) Limited to allow it to more accurately charge 
for usage of the New Zealand national grid.  The author has played a role in the 
development of this model and the interpretation of its output (Read and Ring, 1995b, 
Read and Ring, 1995c, Read, Ring, and Rosevear, 1995).   

In Chapter 2 the theory of short run marginal cost based power pricing is reviewed.  
The market structures which must exist for short run pricing to work efficiently are also 
discussed.  Many of the philosophical ideas raised in Chapter 2 are drawn together with the 
introduction of Dispatch Based Pricing in Chapter 3.  Dispatch based pricing places the 
onus on the dispatcher to determine prices which provide a rational economic 
interpretation of an observed dispatch.  As well as providing a summary of the Dispatch 
Based Pricing philosophy, Chapter 3, introduces the basic ideas underlying the remaining 
chapters of this work. 

Chapter 4 presents a detailed description of a relatively general single period 
dispatch based pricing model, its derivation being given in Appendix A.  This model is an 
extension of the ex post pricing model of Hogan (1991, 1992), incorporating more general 
constraint forms and a choice of independent dispatch variables which is more consistent 
with standard engineering representations.  In Chapter 4 we introduce the concept of 
determining nodal voltage prices in addition to active and reactive power prices.  The 
equations describing these prices, and their economic and physical interpretations are 
explored.  This analysis highlights the features of the dispatch which drive the prices.  In 
particular, we demonstrate that dependent pricing variables correspond to independent 
primal dispatch variables, and vice versa, while constrained primal variables have 
unconstrained prices, and vice versa.  These results have significant implications to the 
way the scope of the dispatchers responsibilities should be defined.  The impact of 
transmission constraints, both on cyclic and acyclic transmission systems, is presented in 
Chapter 5.  We show that the impact of transmission constraints can be significantly more 
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complex than often assumed, but that this behaviour is governed by fundamental physical 
relationships. 

Power is not the only commodity that might be traded in a power system.  Several 
ancillary services must be supplied if a power system is to operate reliably.  An important 
commodity is the reserve generation and transmission capacity held to ensure the security 
of supply in the event of equipment failures.  In a decentralised market it is important that 
incentives exist to encourage market participants to contribute to the system's security 
requirements, and to adequately maintain the reliability of their equipment.  A reserve 
capacity availability pricing model, which ignores the cost of actually calling upon reserve 
during a contingency, is discussed in Chapter 6.  This model is based on the reserve 
scheduling rules currently employed in New Zealand. 

A major assumption of earlier spot pricing proposals (Schweppe et al., 1988, Hogan, 
1992) is that the power system is being operated in an economically consistent manner.  It 
is quite possible that this assumption could be violated due to poor management, or appear 
to be violated as a result of the practical limitations of the pricing model.  In these 
situations the pricing model of Chapter 4 would have no mechanism by which to 
accurately explain the observed dispatch.  In Chapter 7 we propose a modification of that 
model which allows "best compromise prices" to be found given a (seemingly) sub-
optimal power system dispatch.  Best compromise pricing minimises the compensation 
payments which need to be made5 so as to reconcile any differences between the observed 
dispatch and the market clearing best compromise prices.  We show that best compromise 
pricing provides a potential mechanism for avoiding costly disputes between the dispatcher 
and market players while improving incentives for efficient coordination.   

Some of limitations of traditional marginal cost pricing theories include the inability 
to model all inter-temporal linkages between dispatch periods, stochastic effects, and 
integer dispatch variables.  In Chapters 8, 9, and 10 we discuss the ways in which best 
compromise pricing might be used so as to address these limitations. 

Inter-temporal constraints create linkages between prices in different dispatch 
periods, and these linkages may be too complex to fully model in practice.  In Chapter 8 
we discuss three approaches which might simplify the modelling of these constraints.  The 
first approach involves no explicit modelling of inter-temporal constraints in the process of 
dispatching the system, with generating companies being forced to modify their offers so 
as to account for their inter-temporal constraints.  A second approach would have the 
                                                 

5 An industry levy might provide the revenue required to fund these compensation payments. 
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generating companies dictating to the dispatcher the levels at which they wish to generate 
in each period.  The final approach is for generating companies to explicitly inform the 
dispatcher of their inter-temporal constraints, and make it the dispatcher's responsibility to 
determine generation levels over time.  We interpret and compare the implications of each 
of these approaches in the context of dispatch based pricing.  We also show that a second 
order incentive may exist for generating companies to exaggerate the form of their 
ramping constraints so as to maximise their profits. 

As for inter-temporal constraints, the accuracy with which stochastic effects can be 
modelled may be limited by the complexity involved.  In Chapter 9 we use the stochastic 
reserve scheduling problem to explore the modelling of stochastic effects. We use an 
"Optimal Reserve Targeting" model, based on a model proposed by Caramanis et al. 
(1987), to demonstrate how dispatch based pricing might be applied to this problem.  The 
"Optimal Reserve Targeting" model determines the economically optimal level of reserve 
to be carried without blackout being called upon.  We discuss the role of the dispatcher, 
the behaviour and interpretation of the dispatch based prices, and illustrate the factors 
which determine how much reserve capacity a generating unit should provide. 

In Chapter 10 we discuss how the commitment costs associated with integer 
variables might be recovered.  Three general approaches are discussed and compared.  The 
first approach involves forcing generating companies to recover their commitment costs 
via their offers, while the second approach involves extracting rent from the spot market so 
as to provide extra revenue to cover commitment costs.  The third approach involves using 
some form of best compromise pricing to minimise the compensation which needs to be 
paid to cover the commitment costs incurred by generating companies, and, in particular, 
we focus on a best compromise pricing formulation corresponding to the linear relaxation 
of an integer, and possibly multi-period, dispatch problem.   

1.1 Notation and Notational Conventions 

The theory of power system pricing combines engineering, economic, and 
mathematical programming ideas, and has been approached independently from 
researchers from various combinations of these backgrounds.  This has resulted in a 
plethora of notational conventions.  An attempt has been made in this thesis to satisfy the 
notations of all these fields, though the need to avoid ambiguity, and the large number of 
symbols required, limits the extent with which this can be achieved.  Our notational 
conventions are summarised in Appendix B.   
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It is worth noting here, however, that rather than describing prices as being for power 
usage over some defined period, such as an hour, we assume an arbitrary, unitless, interval.  
Hence instead of stating that $5/MWh was paid for 3MWh, the total payment being $15, 
we simply state that $5/MW was paid for 3MW, the total payment being $15. 

Following Read and Ring (1995b), the term "node" is used in preference to the term 
"bus" in all cases except for the swing bus6.  This convention is used because some buses 
(eg three winding transformers) may comprise several nodes (Read, Ring, and Rosevear, 
1995).  We often assume that there is only one generating unit at a node, or, when there are 
multiple units, that all the units there behave identically. 

A physical generating turbine is referred to as a "generating unit"7.  A set of one or 
more such units is referred to as a "generating station".  The company that operates one or 
more generating stations is a "generating company".  Consumers of power at a node are 
collectively referred to as a "load", but are individually referred to as a "consumer".  The 
owner of a high voltage transmission grid is referred to as the "grid owner".  The entity 
which coordinates the dispatch of the power system is called the "dispatcher".  In a number 
of situations we assume that the dispatcher and the grid owner are the same entity. 

                                                 

6 The swing bus is introduced in Chapter 4. 

7 This should not be confused with a "unit of power", as this is an increment of power. 
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Chapter 2 

Electricity Spot Pricing: Theory and Practice 

2.1. Introduction 

Electricity spot pricing is a means by which electricity can be priced so as to reflect 
the true incremental costs of producing and supplying it to a particular location at a 
particular instant in time.  This form of pricing is highly responsive to changing market 
conditions, with prices rising as demand increases and falling as it declines, and so is an 
ideal means for creating rational incentives for participants in a market.  In this chapter the 
role and use of spot pricing theory is described, with particular emphasis on reviewing the 
strengths and weaknesses of the major theoretical models proposed for the evaluation of 
spot prices.  We also review the institutional structures required if a spot market is to 
operate efficiently. 

In Section 2.2. we describe a number of the electricity markets around the world.  
These markets have varying degrees of privatisation and deregulation, and demonstrate the 
role that short run spot pricing can play, as well as the complexities that can be 
encountered.  The early history of spot pricing theory is discussed in Section 2.3.  While 
simplistic models, producing spatially invariant prices, have existed for some time, it has 
only been in the last 15 years that sophisticated nodal spot pricing models have been 
developed.  The highly influential MIT model, which attempts to determine spatially 
varying spot prices in real time, is reviewed in Section 2.4.  In Section 2.5 we report on the 
related Hogan model which determines prices ex post.  A number of other spot pricing 
models are briefly discussed in Section 2.6. 

Spot pricing theory is based on the "first order" economic incentives required for 
efficient market operation.  An electricity market cannot, however, operate efficiently 
using only spot prices, as many of the players may actually face significant "second order" 
incentives which distort the market and alter the behaviour of spot prices.  In Section 2.7 
we describe the origins of these "second order" effects and review the use of long term 
contracts and capacity rights to reduce their impact.    Possible avenues for research are 
discussed in Section 2.8. 
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2.2. The Context of Spot Pricing 

The ultimate aim of spot pricing is to facilitate greater efficiency in the operation of 
power systems by providing incentives for efficient behaviour by market participants, and 
hence allowing some degree of decentralised management.  It therefore seems appropriate 
to describe some of the major power markets in which decentralisation is a topical issue.  
This discussion serves a number of roles.  Firstly, it introduces the issues which spot 
pricing is intended to address.  Secondly, it provides insight into the types of market 
structures which are required for successful spot pricing implementations.  Thirdly, it 
provides evidence that decentralised markets based, at least approximately, on spot pricing 
philosophies can operate successfully.  The theory behind many of the market structures 
described in this section will subsequently be reviewed. 

Of the markets we review8, the markets of Norway, Chile, and Britain have 
decentralised operations with a significant degree of competition.  The United States 
market has traditionally been dominated by heavily regulated regional monopolies, but 
competitive forces are now being seen as a way of reducing regulation and improving 
efficiency.  The Australian market provides an interesting case study as it comprises a 
number of independent markets which are now becoming inter-connected.  The 
New Zealand market has been deregulated and is becoming increasingly decentralised.  In 
Section 2.2.7 we summarise the features of these markets which are relevant to the 
coordination of decentralised markets. 

2.2.1. The Norwegian Market 

Hjalmarsson (1992) reports that until 1991 the Norwegian power system comprised 
approximately 600 mostly small generating plants divided among about 63 production and 
wholesale companies, with about 214 distribution utilities, many of which were vertically 
integrated.  About 99% of the power is produced by hydro generation and, since the 
country has approximately 7,000MW of excess capacity, it is a major exporter of power.  
Norway has, for many years, operated an informal, cooperative power pool which uses 
simple spot prices to assist in coordinating dispatch and market transactions.  Holtan, 
Wangensteen, and Livik (1994) report that reforms since 1991 have encouraged greater 
competition.  The operation of generating stations and the transmission network have 
largely been divorced and a state owned transmission company, Statnett, has been formed 
which either owns or leases all parts of the transmission networks.  Importing and 

                                                 

8 This list is not comprehensive. 
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exporting monopolies held by Statkraft, the state owned power company comprising 30% 
of the generation capacity, have been abolished.  Local government operates another 55% 
of the generation capacity.  Local government power companies may be vertically 
integrated, but are required to have separate accounting practices for transmission and 
generation. 

The power pool sets spot prices based on bids from buyers and offers from sellers.  
The hours of the following day are grouped into similar blocks, there typically being seven 
blocks, and the buyers and sellers effectively signal supply or demand curves to the pool 
for each block type.  In practice the generating companies must bid separately for each of a 
number of geographic areas so as to reflect the potential impact of transmission 
congestion.  Transmission congestion can result in the pool being treated as two or more 
regional pools, each pool having is own local spot price.  In addition to the spot market, an 
access fee is paid by network users so as to cover those networks costs beyond what can be 
recovered from rents earned from inter-pool transmission. 

Holtan et al. report that what are effectively bilateral financial "contracts for 
differences" between power sellers and buyers are commonly used.  These account for 
about 85% of the power sold, with extra power requirements being traded on a spot 
market.  These bilateral contracts provide a financial hedge against pool price variations 
(Schweppe et al., 1988, Henney, 1994).  For example, a generating company may agree to 
supply a customer with some quantity of energy at a fixed price at a fixed time.  The 
contract price reflects the players' expectations of what the price will be at the time the 
trade occurs.  At that time both parties trade on the spot market at the prevailing spot price.  
As the spot price will generally differ from the contract price one party will be better off 
than expected, while the other will be worse off.  The party which is better off then pays its 
windfall to the other party, with both parties therefore seeing an effective price equal to the 
contract price. 

For instance, if the generating company sells its power on the spot market at a price 
of βspot , where β βspot contract> , then it makes a windfall of β βspot contract−  on each unit sold.  
However, this exactly equals the loss made by the consumer, relative to the expected 
contract price, and by paying this windfall to the consumer both parties see an effective 
price of βcontract .  As observed by Schweppe et al., such long term contracts allow bilateral 
trades to be defined financially, even though they cannot be defined physically.  V. Smith 
(1993) describes this feature as the ability to define divisible rights for indivisible 
facilities.   



Chapter 2: Electricity Spot Pricing: Theory and Practice 10 

 

2.2.2. The Chilean Market 

Chile was among the first countries to reform its electricity industry to promote 
greater competition.  Bernstein (1988) and Bernstein and Agurto (1993) report that the key 
reforms occurred in the late 1970's and early 1980's.  Spiller and Martorell (1992) report 
that while there were previously two vertically integrated companies, there are now 11 
regional power generating companies, with a cumulative capacity of approximately 
18,000GWh, and a regulated, independent, transmission network, comprising 21 
distribution companies, not all of which are interconnected.  New generating companies 
have unrestricted access to the market.  The market is coordinated by a body known as the 
Economic Load Dispatch Centre (ELDC).  The Comisión Nacional de Energá (CNE) is a 
regulatory body which develops and coordinates investment plans, regulates prices and 
acts as an observer and arbitrator for private companies. 

Prices at each node of the transmission network are set equal to the local short run 
marginal cost.  The differences between nodal prices is taken by the transmission network 
operators to cover losses and operational costs.  Transmission capital costs are recovered 
with an annual access toll.  Bernstein (1988) reports that the generating companies operate 
purely on the basis of the spot market. 

2.2.3. The British Market 

The British electricity market was reformed in March 1990 with the re-structuring 
and partial sale of the formerly public sector Central Electricity Generating Board (CEGB) 
(Einhorn, 1995, Green and Newbery, 1992).  While nuclear power stations remained under 
state ownership, generation assets were divided into two geographically dispersed private 
sector companies, National Power and PowerGen.  Entry to the market for generating 
companies is now open.  The transmission network is operated by the National Grid 
Company (NGC) which is jointly owned by the regional supply companies.  The demand 
side of the market is being deregulated over a number of years, with full deregulation 
scheduled for 1998.  Green (1994) reports that a limited degree of demand side bidding has 
already been established.  A regulatory body, OFFER, acts to protect customers and to 
promote competition (Littlechild, 1994).  

The NGC dispatches the generating units based on price offers for active power 
issued by the generating companies.  The final "spot" prices, calculated half-hourly, 
include an energy component related to the highest accepted price offer, and a capacity 
component to encourage generating companies to make their units available at the peak 
demand times (Tenenbaum et al., 1992).  This capacity component is based on the "loss of 
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load probability" (LOLP), which describes the probability of not satisfying demand, and an 
estimated "value of lost load " (VOLL).  The prices charged to consumers exceed the price 
paid to generating companies, this difference, or "uplift", paying for many ancillary 
services such as frequency regulation and reactive power provision, as well as VOLL.  At 
the time of the establishment of the market the uplift was calculated ex post so as to 
recover all the various costs incurred, but Green reports that there is now a move towards it 
being determined ex ante so as to give the NGC a greater incentive to control these costs.  
All other price components have always been calculated ahead of time, and hence can be 
inconsistent with the actual dispatch.  A fee is charged for access to the network, though 
this fee does vary according to a measure of network usage. 

The rapidly varying spot prices create financial uncertainty for the players in the spot 
market.  In a similar manner to the Norway situation, contractual arrangements between 
buyers and sellers of power are widely used to hedge against these price variations. 

2.2.4. The United States Market 

The USA has a very large power system, with over 3,200 electricity suppliers, a total 
installed capacity exceeding 700,000MW, and annual production in excess of 
2,500,000GWh (U.S. Congress, Office of Technological Assessment, 1989).  This system 
comprises many vertically integrated utilities.   

Many of the utilities form "pools" which are dispatched as a single entity.  The 
operation of these pools varies.  Tenenbaum, Lock and Barker (1992) describe the 
operation of the New England Power Pool (NEPOOL) which has over 90 members and a 
total generation capacity of 25,000MW.  Pool members are required to install or purchase 
sufficient generating capacity to meet the peak demand of their retail and firm contractual 
customers.  The pool is centrally dispatched so as to minimise costs. Competition arises 
through trades in capacity so that the pool members can satisfy the requirement to meet 
their peak demand.  These trades only occur on paper and do not interfere with the 
physical operation of the pool.  Wilkinson (1989) observes that while some degree of 
competition does result from these transactions, the cooperation involved could be 
considered to be collusion in a truly competitive market.   

The US system is heavily regulated, with both federal and state regulatory bodies.  
Utility revenues are typically set so as to match operating costs plus a specified rate of 
return on capital costs.  There are also many, so called, Non-Utility Generators (NUGs) 
from which local utilities are required to buy power.  NUG generation is often produced as 
a by-product of industrial processes. 
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Regulations are imposed on transmission services so as to encourage efficient usage 
of the transmission system on a national scale.  It has however proved difficult to achieve 
efficiency in this instance.  A major reason for this difficulty is that power flows may 
traverse the networks of many different, and independently managed transmission 
companies.  These transmission companies will use varying methods to charge for access 
to, and usage of, their grids.  This variety makes the role of the regulators difficult.  This 
situation is further complicated by the so called loop flow phenomenon (Hogan, 1992).  
Loop flows arise because the path that power takes through a transmission network is 
dictated by the laws of physics rather than by the wishes of the participants in the trade.  
The existence of loop flow means that any bilateral trade of power between two parties is 
likely to influence the costs of parties not involved in the transaction.  Such externalities 
make it difficult to efficiently price for such bilateral transactions.  Tenenbaum (1993) 
reports that, in the US, the variable costs of transmission tend to be recovered by prices 
based on either average or marginal losses, though these calculations are not generally 
transaction specific, while capital costs are generally based on notional "contract paths".   

The difficulties associated with managing inter-utility transmissions and 
coordinating purchases from NUG generating units primarily arise from the lack of an 
efficient mechanism to determine fair prices while guaranteeing fair market access.  While 
regulation provides a framework in which these transactions can take place, significant 
inefficiencies may result.  For instance, the California Public Utilities Commission (1995) 
has announced plans to move towards a deregulated electricity market, a move made 
primarily as a response to the inefficiencies produced by regulation, which have 
contributed to electricity prices in California being 50% higher than the US national 
average.  The majority view of the commission favours an approach like that in the UK.  A 
regulated independent system (or grid) operator would control all transmission assets and 
coordinate a single pool, dispatching generating units according to their owners offers and 
paying them a uniform market clearing spot price.  Customers would have the option to 
buy power either on the spot market or at a time averaged rate. 

2.2.5. The Australian Market 

Australia is a large continental land mass with widely spread communities.  A single 
national transmission grid has not yet developed due to the large distances between 
populations.  Instead, each state has owned and operated its own power system, with 
significant variation in industry structure.  Traditionally, there has only been a limited 
degree of inter-connection between the power systems of the different states, but this is 
now changing with move towards establishing a national grid.  Outhred and Kaye (1994) 
report that a National Grid Management Council (NGMC) was established in 1991 to 
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encourage free trade in bulk power and more competitive markets for power.  The 
formation of a grid, with the intent of allowing free trade, has created a need for some 
framework for trading power between the power systems of the different states. 

The NGMC has proposed that a single power pool serves all the inter-connected 
states, with spot prices being determined each half-hour based on offers submitted by 
generating companies 24 hours in advance.  Market participants could form financial 
hedging contracts to protect against price volatility. 

2.2.6. The New Zealand Market 

The New Zealand power system has been undergoing an evolutionary reform process 
since 1987.  A detailed discussion of these reforms is provided by Culy, Read, and Wright 
(1995).  On July 1, 1994 the national transmission grid company, Trans Power New 
Zealand Limited, was separated from the dominant state generating company, the 
Electricity Corporation of New Zealand Limited (ECNZ) which produces 96% of the 
power.  Both the generating company and transmission company are operated as State 
Owned Enterprises (SOE), operating on a commercial footing.  Some of ECNZ's 
generating stations will be split from it to form a new SOE in 1996, with some small 
generating stations being sold.  Entry to the market, both for generating companies and 
bulk electricity buyers, has not been restricted.  Many retail/distribution companies, which 
were all previously run by municipal authorities, are now publicly listed companies. 

At present ECNZ sells its power either on a one year contract or on the spot market.  
Kennedy (1994) reports that, each year, ECNZ's customers, being local distribution 
companies or very large industrial users, announce to ECNZ a demand level for each half 
hour of the following year.  For each of these half hours they are allowed to enter into 
financial contracts for between 90% and 110% of the stated amount at a Time of Use 
(TOU) rate announced at the beginning of the year.  Since 1993 the Electricity Market 
Company (EMCO), a joint venture between ECNZ and the retail/distribution companies, 
has facilitated the trade of these contracts, though they may also be traded bilaterally.  
Every Friday ECNZ issues spot prices of electricity for every half hour of the following 
week.  These prices effectively indicate the expected incremental operating cost of 
supplying power in each of those half hour periods.  Any shortfall or surpluses in the 
annual contracts can be traded at these prices.  An additional "pool price margin" is added 
to the costs of all units sold to give the final market price.  This extra revenue recovers 
fixed charges and return-on-capital requirements, and is based on a ten-year rolling 
average of consumption (Culy et al., 1995). 
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In 1984 a transmission price differential was introduced between the North and 
South Islands.  More recently this concept has been extended to all nodes in the 
transmission network, the differentials being annual weighted averages of the half hourly 
spot price transmission components determined by a model similar to that discussed in 
Chapter 4.   

2.2.7. Summary 

A common theme in the debate on electricity market decentralisation is summarised 
in a report by the U.S. Congress, Office of Technology Assessment (1989) in which a need 
for competitive reform is recognised, but concerns are expressed as to how to efficiently 
coordinate the bulk power system when many different companies, owning both 
generating stations and transmission systems, are involved.  In this section we review the 
features of the above case studies which contribute to addressing these concerns. 

The operation of what is effectively a single, regulated transmission network (in each 
isolated power system) is a common feature of the New Zealand, Chilean, British, 
Norwegian, and Australian models.  When generation and transmission are vertically 
integrated it is theoretically possible to achieve perfect coordination, but competitive 
pressures for efficiency and innovation suffer.  The creation, in each physically isolated 
region, of a single transmission network under independent control removes the ability of 
generating companies to control the transmission access and charges of their competitors.  

Compared to traditional pricing regimes which do not vary over time or space, the 
spot pricing approaches used in New Zealand, Chile, Britain, and Norway enhance the 
ability of independent generating companies and loads to operate in an economically 
coordinated manner.  There do appear to be some limitations inherent in the way in which 
spot prices have been applied, though.  Ruff (1992) identifies two major problems with the 
way prices are calculated in the British system.  Firstly, divorcing the calculation of the 
pricing components from the actual dispatch has enhanced the ability of some generating 
companies to manipulate the prices, an ability increased by the lack of competition due to 
there only being two major generation companies.  The latter point is supported by 
simulations by Green and Newbery (1992).  Green (1994) reports that the sale in 1994 of 
6000MW of capacity from the two major power companies, and the introduction of 
2600MW of capacity from new entrants, all combined with new bidding rules, has gone 
some way to eliminating this problem, while Newbery (1995) observes that contracts for 
differences have had a moderating effect on the incentives to manipulate prices.  Secondly, 
Ruff observes that the pricing of ancillary services, which can be vital, is not particularly 
sophisticated.  Green adds that the costs of transmission losses, which he estimates to be 
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worth £2 million annually, are not modelled, even approximately9. Similarly, the spot 
pricing algorithms used in Chile and Norway, while they attempt to account for the 
underlying economics, do not accurately account fully for the physics of power systems.  
These problems expose a limitation in the ability to calculate spot prices rather than any 
faults of spot pricing itself.  

Bilateral contractual arrangements are major features of US power pools and the 
New Zealand, British and Norwegian markets.  These contracts play a major role in 
transferring risk, which in turn brings stability to market operations.  Most transactions 
take place on the contract market, but the value of these contracts, and the values of 
deviations from them, are determined by the spot price. 

These case studies demonstrate a trend towards separate transmission networks 
operating as a common carrier for a range of competitive generating companies and loads.  
The extent to which this market structure can operate without regulation depends to a great 
degree on the pricing regimes used.  Short run spot prices, linked with some form of longer 
term financial hedging contracts, appear to be the most widely practiced, or at least 
recommended, regime to clear the energy market, while a fixed network access charge10 is 
favoured to recover those costs of operating and maintaining the network which are not 
covered by rents earned on transmitting power.  A clear problem however, and one which 
this work attempts to address, at least in part, is the problem of how to account for the 
complexities of power systems within the pricing regime in a manner which is tractable, 
both in an operational and commercial sense.   

2.3. The Origins of Electricity Spot Pricing 

Coase (1970) traces the origins of the large body of literature on marginal cost 
pricing as applied to public utilities back to the 1930's.  A major motivation for the 
development of short run marginal cost (SRMC) pricing techniques was to overcome the 
inefficiencies of fixed tariffs which fail to provide incentives for efficient energy usage.  
As marginal costs change with changing power system usage they can reflect the real 
instantaneous cost of power usage, and hence encourage users to modify their actions 
accordingly.  These can lead to a reduction in peak capacity requirements and higher 

                                                 

9 Nor do spot prices explicitly account for transmission congestion.  Uplift is used to pay generating 
companies to operate in a manner which enables the system to work around these constraints. 

10 The UK is unusual in this regard, as the access charge is related to usage. 
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utilisation of plant.  Some utilities, most noticeably Electricité de France (Nelson, 1964), 
made significant use of marginal cost pricing theory during the following thirty years. 

An alternative to SRMC pricing is long run marginal cost (LRMC) pricing.  While 
SRMCs assume all capacity is fixed, LRMCs assume capacity can be varied.  Vickrey 
(1979) opposes the use of LRMC pricing because, for electricity industries, LRMC curves 
are difficult to define, while SRMC costs can relatively easily be measured and can 
account for long term construction costs if shortage costs are properly accounted for.  In 
general most power systems are in a state of dis-equilibrium, an effect magnified by the 
long lead times involved in building new plant.  For example, in the late seventies, 
Mitchell, Manning and Acton (1978) noted that, at that time, most modern power systems 
were designed in times of low fuel costs, but were being used in a period of high fuel cost.  
The reverse may well hold for many power systems in the nineties.  This dis-equilibrium is 
a major violation of the assumptions of LRMC pricing theory.  Della Valle (1988) suggests 
that poor investment decision resulting from inaccurate LRMC estimates could be large.  
She suggests that it is better to use SRMC prices while allowing investors to base their 
decisions on future SRMC price forecasts.  This is in fact the approach used in New 
Zealand since 1984.   

Vickrey (1979) observed that pricing inefficiencies increase as a function of the 
interval between price changes, and argued that a pareto-optimal11 pricing system would 
be one in which the price is updated in real time.  Vickrey calls such prices responsive 
prices, though they have subsequently become known as real-time prices or spot prices.  
The developers of what we refer to as the Massachusetts Institute of Technology (MIT), 
model, Schweppe, Caramanis, Tabors, and Bohn (1988) recognised the ability of such 
prices to act as a coordination mechanism in a decentralised market.  They argued that, 
apart from recovering costs, such prices must encourage efficient investment, while also 
accounting for the constraints imposed by the engineering requirements of power system 
control, operation and planning.  Furthermore, market participants must be free to choose 
the amount, cost and reliability of the power they use or supply.  Finally, there should be 
no cross subsidisation between market participants.  These conditions simultaneously 
create good incentives for efficient power usage, while encouraging competitive 
management of power systems.  The key issue, though, is how to translate these conditions 
into a practical model.  In the following sections we review models designed to determine 
spot prices consistent with these conditions. 

                                                 

11 That is, a price system under which no-one could be better off without making someone else worse 
off. 
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2.4. The MIT Model 

2.4.1. Origins of the MIT Model 

The MIT, or Massachusetts Institute of Technology, model implements many of the 
ideas brought together in Vickrey's work, and has become the foundation of much of the 
recent work on electricity spot pricing.  The basic model is discussed in this section while 
some of the more specific details will be discussed in later chapters.  A comprehensive 
description of the MIT model is given by Schweppe et al. (1988). 

The MIT model evolved from the concept of Homeostatic Utility Control.  
Schweppe, Tabors, Kirtley, Outhred, Pickel and Cox (1980) describe homeostatic utility 
control as a price based means for maintaining a state of equilibrium within a power 
system.  A set of SRMC based nodal spot prices, responding in real time to the changing 
state of the power system, provide incentives for supply to match demand in an efficient 
manner.  These prices reflect the realities of network operation, in which optimal dispatch 
implies that the marginal cost, and hence the SRMC price, at every node must differ, to a 
greater or lesser extent, from that at other nodes, in a way which exactly reflects the 
marginal losses, and any constraints, between nodes.  These spot prices would be 
communicated, in real time, to the loads and generating units which would, ideally, be 
designed to automatically adjust their operations accordingly.  The differences between 
spot prices at any two nodes would be the transmission price for transactions between 
these nodes.  The transmission prices go to the grid owner to cover the costs of losses and 
congestion12.  

This approach has the major conceptual advantage that it properly reflects the "pool" 
like nature of the electricity market, in which transmission costs can not generally be 
attributed to any specific "transaction".  All that can be done is to determine the total cost 
as a function of the actions of all market participants simultaneously, and define prices 
reflecting the marginal impact of each participant's actions on that total.  Among other 
things, economic consistency implies that, at those prices, a buyer will be indifferent as to 
where power is bought from.  Buying power at a local node, at the price applying there, 
will be exactly equivalent to buying power at a distant node, and paying the transmission 

                                                 

12 As losses are related to line flow by a quadratic relationship, the marginal cost of losses will 
typically exceed the average cost of losses, hence the grid owner may earn more from the loss 
component of the price than is required to pay for losses.  The congestion component would go 
towards paying for an increase in line capacity so as to reduce congestion.  
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charge to deliver it to the local node13.  Consequently, any number of inter-nodal 
transactions can be netted out to form a single equivalent node-to-node transaction, 
independent of any implied "transmission path" through the network.  Thus this pricing 
regime, and only this pricing regime, can create a completely level and friction-less 
"playing field" for generating companies and consumers to trade and compete on the 
transmission grid14. 

Caramanis, Bohn and Schweppe (1982) list the following advantages of this 
approach over more traditional flat rate tariffs: 

•  Reduced usage of fossil fuels due to more efficient power usage. 

•  Lower generating unit loadings, hence less peaking plant and lower capital costs. 

•  Self-rationing of power by consumers during emergencies, and hence a reduced need 
for direct load control and fewer forced power outages. 

•  The prices decentralise the dispatch process allowing easier coordination of 
cogenerators and alternative technologies, and even deregulation. 

•  The use of "real-time" spot pricing eliminates uncertainty from the price setting 
process. 

•  Higher investment in load shifting equipment is encouraged. 

•  Greater average profits for the generating companies and consumers result. 

2.4.2. Spot Pricing with the MIT Model 

Caramanis, Bohn, and Schweppe (1982) developed the pricing model which is the 
heart of the MIT approach.  This was the first theoretical mathematical model to describe 
the detailed form of time varying nodal spot prices in a transmission network.  Demand 
and generating unit availability are assumed to be stochastically distributed with expected 
prices determined for each time period of the planning horizon.  All equations are assumed 
to be continuous and differentiable. 

                                                 

13 If this were not so, the corresponding dispatch could not have been optimal.  It could have been 
improved by producing more locally and less at the remote node, or vice versa. 
 

14 Ignoring second order effects. 
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The prices are determined through a price decomposition of the dispatch process.  A 
master problem describes the maximisation of welfare subject to (simplified) power system 
constraints, while a number of sub-problems determine the profit maximising operating 
level, subject to constraints, of each player.  The optimum spot prices are those prices 
which are simultaneously consistent with optimal solutions of the master problem and all 
the sub-problems.  It is shown mathematically that for each period and for each node in the 
transmission network: 

Optimum nodal spot price =   Marginal fuel cost  

     + Loss premium  

     + Transmission constraint premium  

Here the marginal fuel cost, or system lambda, is the fuel cost of the marginal generating 
unit, i.e. the generating unit which will supply the next unit of power15.  The loss premium 
recovers the cost of the marginal losses incurred in sending power from the marginal 
generating unit to this node.  This value is just the marginal transmission losses associated 
with supplying power to that node multiplied by the system lambda.  Finally, the 
transmission constraint premium alters the price of power when the system line flows are 
in constraint.  These price adjustments may be positive or negative. 

Optimal spot prices respond to changing conditions in the network, with Caramanis 
et al. (1982) concluding that: 

"Spot pricing does away with the need for any knowledge of individual 
customers by giving them monetary incentives to act efficiently on their 
own." 

Rather than having the central dispatcher set usage for each individual user, the users 
set the dispatch themselves, based on their local spot price, and hence, it is argued, less 
information exchange is required between the dispatcher and the market about random 
conditions, nor does the dispatcher need direct access to individual's profit and cost 
functions.  Thus spot prices make it possible, at least in principle, to achieve an optimal 
dispatch without any centralised physical control.  This, of course, would require that spot 
prices be updated continuously for all customers, and that these customers respond 
                                                 

15 If there is more than one marginal node then there must be binding constraints on the dispatch.  The 
use of the term "system lambda" can become confusing in this situation, but an analog of the system 
lambda can be defined as the price at any one marginal node, with the shadow price on the binding 
constraints explaining the difference between this and the prices at the other marginal nodes. 
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instantly.  The proponents of the MIT model concede that this may not be viable in 
practice and suggest clustering customers, and using less frequent pricing intervals.  
Caramanis et al. also conclude that marginal cost based revenues may not match required 
revenues, and that the steps required to compensate for this will "muddy" the theory. 

Caramanis, Roukos and Schweppe (1989) describe the program WRATES, a policy 
tool for developing rates for the "wheeling" of bulk power between independent utilities.  
The wheeling rates are based on nodal price differences.  This program is based on a 
simplified representation of a power system and uses different dispatch scenarios to build 
up a distribution of annual transmission charges.   

Caramanis (1982) presents a variation of the basic MIT model which demonstrates 
the impact of spot pricing on investment.  This model differs from the model of Caramanis 
et al. (1982) by allowing the capacities of generating units to be modified, at some cost, 
over time.  The resulting spot prices have an additional investment term reflecting the 
value of extra capacity at each node16.  These additional terms also serve to ration demand 
in the short term.  Hence, if a transmission network has low reliability, then the investment 
terms will ration demand while providing revenue to improve the network.  Incremental 
investments should be made so as to make the present value of the expected investment 
related income stream equal to the cost of that investment.  It is claimed that the rapid 
updating of the spot prices eliminates the impact of uncertainty on investment decisions.  
These last two results assume, unrealistically, that capacity can be expanded or contracted 
incrementally and instantaneously.  Bohn, Golub, Tabors, and Schweppe (1984) explore 
the conditions required if optimal investment is to occur in a competitive spot market.  
Free market entry and protection against re-imposed regulation are clearly required if 
competition is to emerge.  They argue that there should be many relatively small 
generating companies, a conclusion seemingly supported by the case of the UK market17.  
Their final condition, that generation and transmission expansion should be coordinated, is 
open to interpretation.  In principle, this coordination could be achieved either by 
decentralised market mechanisms or by some centralised authority.   

Caramanis, Bohn, and Schweppe (1987) (also see Schweppe et al. (1988)) 
investigate the integration of system security constraints into their previous work on the 

                                                 

16 This modification is not required if shortage costs are correctly represented in the short run. 

17 In essence they argue that no generating company should have market power.  The work of Scott 
and Read (1995) suggests that if most power is sold under contract, with only small amounts of 
power actually being  traded on the spot market, then market power can be greatly reduced, even 
with a relatively small number of firms.  
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MIT model. Berger and Schweppe (1989) investigate the generalisation of reserve pricing 
models to handle time periods measured in seconds.  These models are discussed further in 
Chapter 9. Tabors et al. (1989) discuss early utility experience with marginal cost pricing, 
while Tabors and Caramanis (1994) review the modelling requirements of SRMC spot 
prices.   

2.4.3. The Practical Limitations of the MIT Model 

While the MIT model provides a solid theoretical foundation for spot pricing, it does 
have practical limitations.  Firstly, the technical difficulties of communicating prices and 
observing the market response to them are great.  While not invalidating the concept, these 
barriers, or more particularly the cost of overcoming them, mean that less ambitious 
implementations should be considered.  Another limitation of this model is that, while it is 
possible to develop a real time pricing model which describes a power system in great 
detail, the need for computational tractability are likely to require the use of 
approximations which will have detrimental effects on the quality of the prices. 

Littlechild (1991) investigated the central proposition of the MIT pricing model, 
namely that spot prices allow the operation of the power system to be decentralised while 
still producing an identical dispatch to that identified by a single welfare maximising 
entity.  Littlechild concluded that the non-convexities and discontinuities in real welfare 
functions and power system constraints18, combined with differing perceptions of the 
probabilities of stochastic phenomena, mean that prices are not likely to be socially 
optimal in practice.  Schweppe et al. (1988) partially address this issue by stating: 

"The fact that the true (prices) may not be calculated does not destroy 
the value of implementing a spot price based energy marketplace.  
The actual value calculated will be much closer to the true values 
than the present-day flat or time-of-use rates, etc.  The goal of 
implementing the spot price based energy marketplace is to improve 
the coupling between the utility and its customers, not to achieve 
theoretical optimality." 

Littlechild also concludes that the multi-period, stochastic spot pricing model 
described by Caramanis et al. (1982) would suffer from the so called, "curse of 
dimensionality".  That is, the number of states the system can take increase exponentially 
                                                 

18 For example the energy conservation constraint (see Chapter 4) is a non-linear equality constraint, 
but to satisfy convexity conditions it must be linear. 
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with the number of time periods.  Furthermore, Outhred et al. (1988) observe that the inter-
temporal links in this model are simplistic, and that the model incorrectly assumes that all 
investment decisions are made at a fixed moment in time, and that there is no uncertainty 
in construction lead times and project costs. 

2.5. The Hogan Model - Ex Post Pricing 

2.5.1. Origins of the Hogan Model 

Hogan (1991, 1992) proposes a pricing model which can determine nodal spot 
prices, for a single dispatch period, which can be used for settling market transactions in a 
wholesale electricity market.  A key feature of Hogan's model is that prices are determined 
after the dispatch has been observed, eliminating the need to solve the primal dispatch 
problem, hence facilitating detailed representation of very complex systems.  This 
approach has become known as ex post pricing. 

Hogan originally proposed the use of ex post pricing as a means of resolving many of 
the commercial difficulties arising from long distance inter-utility transmission in the 
United States19.  These difficulties arise because traditional pricing practices are based on 
ad hoc rules (e.g. contract  path or megawatt-mile) which fail to account realistically for 
the complex physical behaviour of power systems, particularly loop flow20, and which 
therefore create inadequate incentives for the players.  Hogan argues that an efficient 
transmission market should be based on long term transmission capacity rights with short 
run users being forced to recognise the opportunity costs implied by their actions.  These 
opportunity costs would be communicated via prices which would, therefore, promote 
efficient trade over short time intervals.   

While Hogan endorses the general approach of the MIT model, he rejects the 
homoeostatic control concept upon which that model was based.  Hogan concludes that, 
given the power system control mechanisms already in place, homeostatic control is 
unnecessary and that it may undermine the reliability of a power system.   

                                                 

19 Stalon (1987) discusses the problems that these difficulties create for regulators. 

20 "Loop flow" describes the fact that power flows between two points do not follow the shortest path, 
or a contractually agreed path, but may be split among any number of different paths in a way 
which minimises the total impedance experienced between the two points.  Baldick and Kahn 
(1995) raise the possibility of using phase-shifting transformers to allow some degree of control of 
power flows, but we do not consider this possibility. 
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By determining prices given an observed dispatch Hogan's approach can model the 
full complexity of an AC representation of a power system.  While the MIT model could 
be applied to such systems, the need to simultaneously solve the primal and dual problems 
may limit the complexity that can be represented in practice.  Hogan argues that it is 
important to model a full AC system, as it can be shown that reactive power prices must be 
represented if active power prices are to fully reflect economic costs (Hogan, 1993, 
Baughman and Siddiqi, 1991)21.  A further feature of ex post pricing is that it actually 
reduces the risk of price manipulation in competitive markets.  If nodal prices calculated 
before the event (ex ante), are applied to actual (ex post) volumes there may be some 
potential for generating companies to manipulate the price by issuing misleading 
information about their availability22.  Ex post prices go some way towards eliminating this 
form of price manipulation as they are based on what actually happened, rather than what 
was expected.   

2.5.2. Spot Pricing with the Hogan Model 

Hogan presents a model for determining the nodal active and reactive power prices 
in an AC power system.  Hogan's pricing equations are similar to those of the MIT model 
but are derived from the dual of an AC Optimal Power Flow (OPF) formulation.  Hogan 
assumes a welfare maximising objective function.  The dual OPF is formed from a 
linearisation about an observed power system dispatch.  The prices can be found by 
solving this dual formulation after substituting into it the marginal costs, the incremental 
impacts of players on each constraint, and the binding constraints corresponding to an 
observed dispatch.  The fundamental assumption of this approach is that a power system is 
operated in an economically efficient manner and that economically consistent prices can 
therefore be deduced. 

The ex post pricing regime can be generalised to assume that the dispatcher 
"optimises" the system using the supply and demand curves implied by pre-dispatch offers 
from generating companies and bids from wholesale customers.  In practice this is likely to 
involve a "pre-dispatch" process to determine planned, and expected, operation perhaps a 
day ahead (as in the UK) or a week ahead (as in Norway), plus real-time control to adapt 
that plan to meet changing circumstances.  Ruff (1992) observes that, as long as the 

                                                 

21 Kahn and Baldick (1994) note, though, that the magnitude and impact of reactive power prices may 
be exaggerated if the observed reactive power generation and line flows have not been optimised. 

22 As encountered in the UK system. 
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dispatch is consistent with these bids and offers, and the prices are consistent with the 
dispatch, the market participants should be satisfied.   

Hogan's AC pricing method has successfully been applied to realistic networks.  
Rosevear and Ring (1992) report that prices for all 600 nodes in the New Zealand system 
can be determined within about 90 seconds using a 386 PC.  These prices are currently 
only used for determining fixed average annual nodal price differentials.  In the United 
States, this model has be successfully applied to problems with over 3768 nodes (Hogan et 
al., 1995) 

2.5.3. The Practical Limitations of the Hogan Model 

A central assumption of Hogan's approach is that the dispatcher can determine some 
form of dispatch, in an unspecified manner, from which "optimal" prices can be derived.  
Given the fact that duality theory imposes relatively strict requirements on the range of 
feasible pricing solutions that can exist, it may occur that there are no prices consistent 
with an observed dispatch.  Outhred (1994) is particularly critical of this aspect.  This issue 
is explored more fully in the following chapter. 

Hogan does not provide detailed analysis of inter-temporal and stochastic aspects, 
nor does he use a general set of independent dispatch variables.  Accounting for these 
factors has a significant impact on the both economic interpretation and the 
implementation of such a pricing model.  As will be argued in the next chapter, factors 
such as stochastic effects can require more subtle distinctions than the simple ex post/ex 
ante characterisation made here. 

2.6. Other Spot Pricing Models 

While we primarily use the models of Hogan and Schweppe et al. as our reference 
models, there is an ever increasing range of publications on related models or applications 
and extensions of these models to specific problems or situations.  In this section we 
briefly summarise some of these works. 

Rivier and Pérez-Arriga (1991) present examples of MIT model spot pricing 
calculation using their JUANAC model.  Baughman, Siddiqi and Zarnikau (1992) discuss 
an AC extension of the MIT approach.  While they provide general representations of a 
wide variety of constraints, including security constraints, pollution emission limits, and 
harmonic distortion, they do no explore detail implications or precise form of each 
constraint, nor do they discuss how such a model should be solved. 



Chapter 2: Electricity Spot Pricing: Theory and Practice 25 

 

Baughman and Siddiqi (1991) use prices derived from an OPF (which includes the 
modelling of demand elasticity) for a simple 4 bus system to highlight the importance of 
reactive power pricing.  Chattopadhyay, Bhattacharya, and Parikh (1995) use a reactive 
power pricing model as part of a cost-benefit analysis to determine the size and placement 
of capacitors in a transmission network.  Dandachi et al. (1995) study the feasibility of 
using a security constrained optimal power flow problem to price for reactive power in the 
UK, and while noting that further work is required, draw favourable conclusions.  

While a detailed discussion of retail markets is outside the scope of this work, the 
connection between wholesale spot pricing and retail pricing is important, as the full 
advantages of responsive wholesale pricing cannot be gained unless demand reacts to price 
at all levels.  Chao and Wilson (1987), and Chao et al. (1986) propose the use of "priority 
service contracts" which allow consumers to select a desired level of service reliability 
from a menu.  Associated with this reliability is a priority charge per unit contracted, and a 
service charge per unit actually delivered.  A utility selling such contracts then has the 
right to curtail load to customers in ways which are consistent with the service reliability 
specified by each customer.  The priority service contracts held by a customer effectively 
act as an "expert system" representation of that customers' response to spot prices.  
However, in determining who is served, it is not necessary to know the spot prices, 
customers are simply served in order of their specified reliability levels.  Chao and Wilson 
conclude that in the absence of transaction costs, priority service contracts and spot pricing 
will be equally efficient methods and, given perfect information, will both achieve a 
socially optimal allocation of resources.  

In the context of the traditional market structure in the United States, Siddiqi and 
Baughman (1992) propose Reliability Differentiated Real-time Pricing, an approach 
related to priority service contracts, which allows a utility to ration supply by charging 
consumers different prices, these prices rising with the firmness (or reliability) of supply 
required, while Siddiqi and Baughman (1994) discuss the application of this approach to 
the pricing of Non-Utility Generation.  For a similar context, Murphy, Kaye, and Wu 
(1994) derived simplified spot pricing relationships for radial local distribution networks 
(sub-station level and below). 
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2.7. "Second Order" and Long Run Issues23 

Marginal cost pricing only provides "first order" incentives to players in a 
competitive market, and cannot be guaranteed to provide correct signals in the long run.  In 
this section we briefly review the mechanisms which can be used with SRMC pricing so as 
to address these issues. 

2.7.1. Network Cost Recovery 

Read and Sell (1989) observe that most regions in New Zealand are served by only 
one or two lines and that the large "fixed" investment costs for these lines imply optimal 
line capacities well in excess of technical requirements.  That is, once the decision has 
been made to serve a region with a line, and the fixed costs associated with a small line 
have been committed, the incremental costs of actually installing a larger line are relatively 
small, and easily justified in terms of the long run impact on losses, congestion etc.  Since 
the expected revenue from capacity rentals, or the "quality of supply premiums" referred to 
by Schweppe et al. (1988) will, on average in the long run, only equal these incremental 
costs, a significant proportion of the fixed investment costs will not be recovered in this 
way.  Read and Sell used a DC approximation to estimate that, in New Zealand, only 10% 
to 30% of total costs of optimally sized transmission lines could be recovered through 
optimal short run pricing.   

More recent experiments with the AC pricing model of the New Zealand system 
suggest that these DC approximations significantly under-state the cost recovery problem.  
In fact, the charging currents required by lightly loaded lines reduce the rent which might 
otherwise be expected from marginal cost pricing for losses, to the extent that the 
transmission system sometimes operates at a loss, and barely breaks even in many periods.  
Read (1989) proposes that such a large discrepancy can only be recovered through some 
type of "fixed charge", "taxation", "club membership fee", or "take-or-pay contract" 
determined in a way which provides efficient long-run incentives while not distorting the 
short run incentives.  Ideally this latter requirement means that long run charges should be 
independent of actual usage during the period of the contract, or pricing regime.   

Read and Sell also argue that, ideally, transmission facilities should only be built 
when users are prepared to pay for them because they judge that the net present value of 
the cost of facing the extra spot price differentials which would eventuate without 

                                                 

23 This section is based on Read and Ring (1995d) and Ring and Read (1995).  
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expansion exceeds the capital cost of the expansion.  Users should then commit to a take-
or-pay contract at the time of expansion, and receive "capacity rights", as discussed below, 
for the new capacity. 

2.7.2. Market Power, Contracts, and Capacity Rights 

The SRMC pricing mechanisms described above assumed that all generating 
companies are price takers.  In practice the owners of large generating stations may have 
significant market power to influence prices.  For example, a large low cost generating 
station could operate at below its full capacity, forcing a more expensive generating units 
that otherwise would not be operated to cover the difference.  The market price must rise 
to cover the marginal cost of the more expensive units.  The extra revenue produced by the 
higher price being applied to the "gaming" company's output may offset the revenue lost in 
restricting its capacity, giving it a significant second-order incentive.  The theoretical work 
of Scott and Read (1992, 1995) suggests that these incentives can be greatly reduced if 
generating companies have a significant proportion of their capacity under long term 
contracts for differences, a result consistent with the observations of the UK market 
reported by Newbery (1995)24.   

Most analyses of gaming and contracts have concentrated on "energy" markets, but 
the way in which losses depend on the actions of other parties, and the potential for 
transmission networks to become congested, creates significant uncertainty about short run 
prices at any particular node in the network, and between any pair of nodes.  In particular, 
transmission congestion may effectively segment the market, increasing the market power 
of some generating stations by restricting market access of others.  Heinz (1995) identifies 
this as a major problem in Argentina, where generating companies must contribute to the 
costs of operating the transmission network but are not guaranteed access to the network 
and receive no compensation if they are forced out of the dispatch by congestion.  Read 
and Sell (1989) and Hogan (1991, 1992) have proposed capacity right mechanisms which 
help to overcome this problem.  These rights would be financial contracts, based on the 

                                                 

24 To deal with problem of profit maximising utility restricting supply to force up prices Vickrey 
(1979) proposed an escrow fund.  Consumers would pay a time varying spot price while generating 
companies would receive a pre-arranged, time-of-day, standard price.  Any positive (negative) 
differences between the spot price and the standard price would paid into (taken from) the escrow 
fund.  Thus any generating company that restricts supply to force up the spot price will lose the 
additional profits to the escrow fund.  This approach is too simplistic as the utilities lose many of 
the operational incentives associated with true spot pricing.  
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differences in nodal spot prices25, thus providing network users with a result equivalent to 
being able to send an agreed amount of power between nodes, on a hypothetical "dedicated 
line", at an agreed cost.  When flows between the nodes defined in a capacity right are 
constrained, spot prices will move up at the "receiving" end and down at the "sending" end 
to reflect the capacity charge component of the price.  Prices may even fall so low at the 
generator node that it is forced out of the dispatch, but the capacity right will still refund 
the capacity component on the agreed quantity, irrespective of the actual generation level.  
This effectively gives the generating station access to the price at the "receiving" end for 
that quantity of power generated by it or, if it is forced out of the dispatch, "bought in" 
from cheaper sources.  The rights proposed by Read and Sell go further by refunding the 
rental component implicit in marginal losses, thus effectively giving access to a notional 
dedicated line, at the corresponding loss factor.  Recently, Chao and Peck (1995) have 
proposed the use of a DC load flow model to evaluate capacity rights similar to those 
proposed by Read and Sell, while Bushnell and Stoft (1995) have discussed the allocation 
and trading of Hogan style capacity rights.     

If network users do not hold capacity rights roughly in proportion to their "usage", 
that is for the amount they wish to buy/sell on the "other side" of the constraint, they may 
have incentives to distort the inter-nodal differentials.  For example, if two users are 
equally dependent on a line, but one holds all the rights, the one holding the rights may 
wish to force the line into constraint, by adjusting generation or load at certain times, thus 
forcing the other party to pay rent.  Such behaviour may seem undesirable, but it can also 
be seen as part of the normal commercial process which gives both parties incentives to 
pay for, and obtain rights to their "fair share" of the capacity.  It can be shown, for rights of 
the form proposed by Read and Sell, that second order incentives will tend to move actual 
utilisation toward the capacity right holdings, and so will tend to stabilise usage patterns 
around these contractual agreements, without imposing any arbitrary or rigid restrictions 
(Read, 1991). 

More subtle effects arise with losses, due to the non-linear (and near quadratic) 
nature of the loss function.  Using a DC approximation, it is easy to see that if a generating 
company were responsible for the actual losses on its own spur line, it would differentiate 
the loss function to determine a marginal loss equal to twice the average loss, which is the 

                                                 

25 Capacity rights differ from "contracts for differences" in that the former are based on differences 
between spot prices at two nodes while the latter are based on the difference between either a  spot 
price at a single node, or the pool price, and a previously negotiated contract price.  Contracts for 
differences normally only hedge against price uncertainty while capacity rights hedge against 
uncertain market access.   
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correct "first order" price differential, such as would be determined from a DC pricing 
model.  However, if it were faced with the "optimal" prices based on marginal costs, it will 
still face a quadratic cost function (price multiplied by losses) for losses on the spur line, 
but one which rises at twice the true rate.  Differentiation will then yield an effective price 
differential twice as great as it should be, giving the generating company artificial second 
order incentives to reduce generation in order to get a higher local price.  Read and Ring 
(1995d) observe that the impact of such effects is debatable.  In dense systems, "sole use" 
of lines will be unusual, and loss differentials will also be small, so that doubling them will 
make little difference.  In thermal systems, distortions will have no impact unless they are 
larger than the price steps in the supply curve.  In hydro systems, prices are determined 
from water values representing the value of storing water for future production at similarly 
distorted prices.  Thus, ignoring the possibility that spill will increase, there can be no 
overall impact on production, since water must eventually be used.   

To the extent that there is a problem, it can not be overcome by charging average 
loss costs, as this will only give correct price signals for monopoly users of lines, whereas 
most users would be minority users of most lines.  However, if users hold capacity rights 
of the form described by Read and Sell (1989), in which losses are accounted for, the 
second order incentive is modified to move generation towards the capacity right 
allocation.  This generally reduces distortion, removing it entirely if capacity right 
allocations match optimal generation patterns. 

Rosevear, Read and Watson (1992) identify a similar second order problem with loss 
differentials for reactive power, since optimal reactive power prices at generator nodes will 
typically be zero.  They suggest that in this case the best solution is probably for the 
dispatcher to buy the right to dispatch reactive generation, within limits, rather than paying 
for the reactive power on an half-hourly basis.  If the transmission grid is managed by the 
dispatcher, as is the case in New Zealand, then second order incentives can potentially 
exist for the dispatcher as well, since declaring a transmission line to be constrained 
increases the dispatcher's revenue.  If this is believed to be a problem, though, users should 
buy capacity rights for the system capacity, since this not only protects them from the 
effects of such manipulation, but removes any incentives for the dispatcher to act in this 
way. 

2.8. Avenues for Research 

It is apparent from the international case studies that the basic concepts of spot 
pricing have gained wide acceptance, however there is still a need to refine both the 
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philosophy and theory of spot pricing.  Some potential refinements, specifically relating to 
spot pricing, which might be made include: 

1. Generalising the philosophy of spot pricing to encompass the approaches of Hogan 
and Schweppe et al., while eliminating the need to assume that the dispatch is 
actually optimal, as this is unlikely to hold in reality. 

2. Increase the generality of the pricing models to include a wider range of dispatch 
constraints. 

3. Increase the robustness of the mathematical pricing model to make it consistent with 
the generalised philosophy, allowing it, for example, to deal with primal sub-
optimality. 

4. Devise mechanisms for addressing those dispatch constraints which are either 
inconsistent with the assumptions of marginal cost pricing (e.g. integer variables) or 
involve excessive modelling complexity to fully represent (e.g. inter-temporal and 
stochastic effects). 

5. Explore and explain the behaviour of prices in practice. 

6. Examine the "second order" incentives implied by these "first order" prices, and, 
where necessary, develop mechanisms to modify these incentives. 

In this work we primarily address the first four points, with a more general "Dispatch 
Based Pricing" philosophy being proposed in the next chapter, and a generalised 
mathematical pricing model discussed in Chapters 4 to 6.  Chapter 7 deals with increasing 
the robustness of this model to deal with apparent primal sub-optimality while Chapters 8, 
9, and 10 suggest possible ways of addressing inter-temporal, stochastic, and integer 
effects within the dispatch based pricing framework.  While the final two points are not 
primary goals of this work, we do report on some aspects of observed pricing behaviour to 
illustrate the importance of some theoretical features, and discuss the second order 
incentives of some of the new pricing model features we propose. 
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Chapter 3 

Dispatch Based Pricing26 

3.1. Introduction 

In the final section of the previous chapter it was observed that there is a need to 
develop a broader philosophical view of spot pricing.  In this chapter we introduce a new 
philosophical interpretation of spot pricing called "Dispatch Based Pricing".  This 
philosophy provides a different perspective on the pricing models proposed by Schweppe 
et al. and by Hogan, with prices being viewed as a mechanism by which the system 
dispatcher can "explain" an observed dispatch to the market, rather than just reflecting the 
value of the contribution of each market participant.  In many instances the results will be 
equivalent, but we argue that the dispatch based pricing philosophy provides a more 
flexible, and hence practical framework within which to explore and interpret spot pricing 
formulations.  We consider the rationale for this philosophy, and discuss some of the 
practical implications.  Further implications will be explored, in the light of mathematical 
models, in later chapters. 

3.2. Dispatch Based Pricing Philosophy 

The approaches of the MIT model and the Hogan model have variously been 
described as "Short Run Marginal Cost Pricing", "Nodal Spot Pricing", and "Ex Post 
Pricing".  Each of these terms describes one aspect of the fundamental approach, but none 
is wholly satisfactory.  A pricing model may include constraints, and produce prices, 
which are not specifically "nodal", while short run marginal cost pricing could be ex post 
or ex ante.  Even the precise definition of ex post becomes contentious when dealing with 
dispatches made, perhaps sub-optimally, under uncertainty.  Strict ex post pricing would be 
based on dispatch outcomes but, when operating under uncertainty, real time dispatch 
intentions may be more relevant.  The use of the term "marginal cost" may also become 
contentious when considering non-convexities in cost functions and dispatch constraints.  

                                                 

26 This chapter is based on Read and Ring (1994a). 
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Thus we prefer the more general term "Dispatch Based Pricing", which reflects the basic 
goal, which is that: 

Prices should be determined, after the fact, so as to be consistent with 
the observed dispatch, in the sense that they provide a rational 
economic explanation for it, given the price "floors" and "ceilings" 
expressed by the sellers and buyers in their pre-dispatch offers and 
bids. 

This approach allows all market participants to indicate to the dispatcher what 
services they will supply or require and the minimum price at which they will supply them, 
or the maximum price at which they will purchase them.  The dispatcher is free to dispatch 
the system, given this information, in any manner, but must be able to provide an 
explanation of that dispatch, via prices.  In principle, this definition allows us to relax the 
requirement, implicit in the dual formulations of Schweppe et al. and Hogan, for example, 
that the dispatch be optimal, with hindsight.  Thus a "rational economic explanation" of a 
dispatch may be that the dispatcher understood, rightly or wrongly, that a particular 
constraint on the system was limiting the dispatch, or even that the dispatcher was not free, 
or not able, to optimise the dispatch.   

The fundamental requirement for a rational economic explanation is still provided, 
though, by applying classical linear programming duality theory to the (possibly 
hypothetical) optimisation performed by a cost minimising dispatcher.  Any departure 
from strict merit order operation can be "explained" by claiming that it was necessary in 
order to work around some constraint.  This "explanation" is provided by the dual shadow 
price assigned to the constraint, and the fact that all other aspects of the dispatch must be 
consistent with that shadow price.  One of the consistency criteria which duality theory 
imposes on the prices is that the price assigned to any variable which has been optimised 
by the dispatcher, and is not forced against a constraint in the observed dispatch, lie 
between the net cost of decreasing it and that of increasing it.  For example, active power 
prices, at each node, must lie between the bid/offer floors and ceilings for that node.  This 
requirement can ensure that all parties, except perhaps the dispatcher, will be adequately 
rewarded for their actions.  On the other hand, this approach also allows the flexibility to 
relax the pricing consistency requirements, with the consent of those affected, by assuming 
that some variables have not been optimised by the dispatcher, or at least not within the 
time frame under consideration.  For example, in New Zealand, the reactive power and 
voltage magnitude settings for generating units are currently treated in this way, since they 
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are not (yet) actively optimised within each half hour scheduling period27.  One critical 
issue, then, is to determine the scope of the dispatcher's responsibilities, in terms of28: 

•  the variables and resources which the dispatcher is assumed to control and/or "own", 

•  the variables and resources for which the dispatcher is responsible to optimise 
utilisation, 

•  the time frame within which, and over which, the dispatcher is assumed to optimise, 
and 

•  the degree of foresight which the dispatcher is expected to exercise. 

Once these issues have been determined, the appropriate form of the pricing model 
follows, as demonstrated in Read and Ring (1995b).  Typically, the formulations which 
have appeared to date have taken a particular view on these matters, requiring, for 
example, that we assume each observed dispatch to be optimal in terms of the constraints 
which are evident within a particular half hour snapshot, since otherwise no consistent set 
of prices can be found.  It is obvious, though, that a particular half-hourly dispatch which 
appears to be sub-optimal, when viewed in such terms, may actually be optimal when seen 
in a wider context involving ramping constraints and integer unit commitment costs.  
While practitioners using snapshot models can find ways to account for such effects, the 
apparent restrictiveness of some of the assumptions has lead to criticism of this type of 
model.  We believe that much of this criticism is mis-directed, and can be avoided if these 
formulations are seen in the context of the broader dispatch based pricing approach 
advocated here.  

Similarly, criticism has been levelled at the whole concept of ex post pricing on the 
ground that market participants need price signals to guide their behaviour before the 
event, not after.  By advocating that prices be evaluated  ex post, though, we are not 
suggesting that no price information would, or should, be available ex ante.  Rather we 
expect that, as the dispatch time approaches, pre-schedules will be formed, prices will be 
estimated on that basis, and deals will be done at those prices, but guided by the 
knowledge that, finally, the ex post prices, reflecting the economic impact of actions by all 
parties in real time, will apply to deviations from whatever prior deals may have been 
done.  This approach protects the commercial interests of all parties, while allowing 

                                                 

27 This example is discussed further in Chapter 4. 

28 These issues are discussed in a mathematical context in Chapter 4. 
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dispatchers, rather than being constrained by arbitrary "physical" contracting 
arrangements, to control the system in a secure and economically rational way, knowing 
that the economic implications of that dispatch will be consistently reflected in prices 
which deliver appropriate commercial and economic signals to all parties.  In this way 
dispatch based pricing can allow the physical and economic complexity of network 
operation to be reflected in prices to the extent that the most sophisticated market 
participants deem to be commercially worthwhile, while allowing, and giving appropriate 
incentives to, all parties, including the dispatcher, to act in response to the best, and most 
up-to-date set of prices they find it worthwhile to obtain. 

3.3. Explaining an Observed Dispatch 

In this section we present examples of how the dispatch based pricing philosophy 
can be used to provide interpretations of the key features of an observed dispatch.  
Although we will later characterise the pricing problem as the dual linear programming 
problem corresponding to the linearisation of the original primal dispatch optimisation, the 
dispatch based pricing methodology does not require that a pricing model, or the 
corresponding primal formulation, be explicitly solved during the dispatch process.  It is 
claimed that a dispatch based pricing model may be applied to any observed dispatch, 
derived in any fashion.  This claim is advanced, though, on the assumption that any 
dispatcher will have found an economically rational dispatch, that is, one which is optimal 
for the (primal and dual) constraints reported to the model29.  Thus, rather than 
concentrating on the ex ante "primal" problem which may, or may not, have been solved 
by the dispatcher, it is more helpful to concentrate on the ex post "dual" problem faced by 
a dispatcher trying to justify that dispatch. 

Generally, if the dispatch is in strict merit order, there will be no need for a 
sophisticated model to "explain" the dispatch.  It is only where "out of merit order 
dispatch" (OOMOD) occurs that such "explanations" are necessary.  Thus the whole 
pricing process described here is driven primarily by the observation of OOMOD, and the 
attempt to explain it, rather than by direct consideration of the dispatch process and the 

                                                 

29 In Chapter 7 we will show that this assumption can also be dropped if the dispatcher is prepared to 
pay compensation for incorrect dispatching. 
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constraints which may have operated during it.  In fact if a physical constraint causes no 
observable OOMOD, it is irrelevant for marginal cost pricing purposes30. 

In order to focus our discussion it will be helpful to relate the issues to the following 
simple example of apparent OOMOD: 

 The generating unit at node i, having a capacity of 100MW and a 
"marginal" cost of 2c/kW, was observed to run at only 95MW, on 
average, over a dispatch period.  The system marginal generation cost 
was 2.2c/kW, suggesting that it should have produced 100MW. 

As will be seen from the discussion below there are several possible "explanations" 
of this event.  Broadly speaking, these explanations fall into seven categories: 

•  the impact of losses. 

•  misrepresentation of the data describing the observed dispatch. 

•  system constraints. 

•  inter-temporal constraints. 

•  changed, or unforseen, circumstances. 

•  integer effects. 

•  truly sub-optimal dispatch. 

As will be seen, these explanations have significantly different pricing implications, 
as expressed by the price "floors" and "ceilings" which can be inferred from the 
observation.  We might also observe that the plausibility of the possible explanations 
varies widely.  Fortunately, the more extreme pricing implications are generally associated 
with the least plausible explanations. 

3.3.1. The Impact of Losses 

As observed by Schweppe et al. and by Hogan, the impact of transmission losses, 
both for active and reactive power, can be represented by the marginal change in system 

                                                 

30 The converse statement is not true, though, as a constraint which affects the dispatch may or may 
not effect marginal cost based prices.  For example, a non-convex constraint may have an impact on 
the dispatch, but will not necessarily have any impact on marginal costs as these assume convexity. 
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losses with respect to a marginal change in net injection at each node.  One node, 
introduced in the next chapter as the swing bus, is treated as a nominal source or sink of 
the power change required to balance the change in losses.  At this node the loss 
derivatives are zero.  The price at each node must be adjusted to accounted for the cost of 
covering the change in marginal losses.  Hence the first possible explanation for the 
apparent example of OOMOD at node i is simply that the loss adjusted price at the node 
was exactly 2c/kW, and that the unit was deliberately and correctly scheduled between its 
bounds.  The difference of 0.2c/kW between this price and the system lambda represents 
the cost saving made by reducing losses through generating power at node i, rather than at 
the marginal node.  In this case node i was a marginal supplier of energy31, implying that 
the price at that node must exactly equal the unit's marginal cost of 2c/kW. That is we 
have: 

Nodal energy price floor = ceiling =2c/kW 

Attempting to explain prices in terms of the cost of power at the marginal source and 
loss derivatives produces a "loss differential solution".  If these prices are consistent with 
all offers and bids, the pricing problem is solved, but each remaining inconsistency must 
be due to one of the other causes discussed below. 

3.3.2. Misrepresentation of the Data Describing the Observed Dispatch. 

Before looking for any other explanation, we should consider the possibility of data 
error.  In fact, minor discrepancies between the primal and/or dual constraints assumed and 
reality are likely to be quite common, for a variety of reasons.  The problems related to 
node i could include the following: 

•  The unit generation may have been wrongly recorded, and it actually did generate 
100MW.  Alternatively it generated as much as it could, which turned out to be 
95MW in that dispatch period, due to problems with the unit, or to the dispatch 
situation changing within the period.  Thus the price there could be anything greater 
than 2c/kW, i.e.: 

Nodal energy price floor =2c/kW, no ceiling 

                                                 

31 Under such circumstances there can be multiple marginal nodes, all with equivalent loss adjusted 
prices.  That is, if prices are set at one marginal node then adjusting that price for losses will 
produce the correct price at each of the other marginal nodes.  Hence the choice as to which node is 
selected to be "the" marginal node, and hence set the system price, is arbitrary. 
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•  Logically, we should also consider the reverse alternative, although it seems less 
plausible in this case, that the unit was actually not generating at all, or was 
generating as little as it could, because of some minimum running constraint32, in 
which case: 

Nodal energy price ceiling =2c/kW, no floor33 

•  The marginal cost estimate of 2c/kW may not have properly accounted for efficiency 
effects.  Although generation up to 95MW may only cost c−=2c/kW, generation 
beyond that point might cost, say, c+=2.3c/kW34.  In that case the unit would have 
been correctly scheduled at 95MW, and the price at the node can lie anywhere 
between these two limits, i.e.: 

Nodal energy price floor =2c/kW, ceiling =2.3c/kW 

Obviously, the extent of any apparent physical "discrepancy" is a critical issue here.  
The plausibility of the various explanations advanced above varies dramatically as the 
observed solution varies between, say, 50MW and 150MW. 

Automatic checks must obviously be made for data integrity, but dispatcher input 
will surely be required to determine whether a unit will be deemed to have been fully 
loaded on any particular occasion.  In view of the pricing implications, generating 
companies and consumers will certainly have conflicting views on these matters, too.  
Thus it is suggested that the intentions and judgements of the dispatcher should be 
recorded as close to the dispatch time as possible, and preferably checked for consistency 
at that time.  One way to check the consistency of the intended dispatch would be by 
forming its corresponding pricing solution. 

We also note the necessity to carefully and consistently define exactly how the 
pricing data is to be collected, whether in the form of snapshots or of integrated 
measurements over the period.  For example, suppose an expensive unit generates at some 

                                                 

32 Such minimum running restrictions can arise from river flow constraints on hydro generators, for 
example, or from integer loading restrictions.  The latter can be accounted for by setting an 
appropriate price ceiling in the model, as has been done here, but this does not guarantee a fully 
consistent solution over time.  This issue is addressed under the heading of integer effects below. 

33 We can not even infer a floor of zero.  There are circumstances when nodal prices can become 
negative. 

34 In general, marginal cost will rise with output, even if average cost is falling. 
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time during the half hour.  It may be taken to be marginal over the whole half hour if 
pricing is based on integrated measurements, and this may establish an unrealistically high 
price.  On the other hand a snapshot may exclude the unit all together, forcing it to 
generate at a loss. 

3.3.3. System Constraints 

Assuming that the apparent dispatch discrepancy is not explained by loss 
differentials, or by data error, the most likely explanation will be in terms of some system 
constraint having prevented a more economic dispatch.  While the form and nature of these 
constraints will be explored in later chapters, all that is relevant to this discussion is that 
these constraints can be broadly grouped as "electrical" constraints and "operational" 
constraints. 

For purely "electrical" constraints in which the generation and demand variables 
appear symmetrically (including line and voltage constraints), we have the following 
explanation: 

•  That the unit at node i was deliberately and correctly dispatched at 95MW in order to 
help meet some electrical constraint which was believed to be binding, implying that 
the price for energy at that node should be set to the marginal cost of 2c/kW, but that 
the relevant constraint should be invoked to explain any discrepancy between this 
and the prices implied by other marginal units.  Thus: 

Nodal energy price floor = ceiling =2c/kW 

Constraint multiplier activated 

For "operational" constraints, such as emergency reserve capacity constraints, in 
which power generation plays a fundamentally different role from "negative load", we 
have a slightly different explanation: 

•  That the unit at node i was correctly and deliberately dispatched at 95MW in order to 
help meet some other constraint, implying that the combined price for energy and, 
say, reserve, must equal the marginal cost of 2c/kW35. 

Combined nodal energy price/reserve price floor = ceiling =2c/kW 
                                                 

35 Refer to Chapter 6. 
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Reserve constraint multiplier activated 

If the system is optimally dispatched, system constraints should explain most 
situations not already explained by the loss differentials.  Deciding whether a constraint is 
binding, or not, may not always be a simple matter, though.  Transmission constraints, for 
example, may often be considered as "soft", with a certain amount of "overload" being 
acceptable for a short period on a cold day, but not in other circumstances.  Contingency 
constraints, such as reserve constraints, are even harder to quantify.  Again dispatcher 
input is essential, and judgements can be expected to be contested. 

Obviously, the extent of any apparent physical "discrepancy" is a critical issue here 
too, as is the extent to which the constraint concerned affected the dispatch.  If there is 
OOMOD, some constraint must be invoked to explain it, and it will have to be assigned a 
shadow price large enough to create a price differential at which that OOMOD becomes 
economic.  Conversely, if there is no detectable OOMOD, no price will be assigned to the 
constraint even though the dispatcher may have believed it to be binding.  It may be 
thought that one way of resolving some ambiguities is to specify several constraints as 
binding, and let the pricing model decide which it will assign a price to36, but this may not 
be desirable if the pricing model objective function does not match the true dual objective 
function and if the dispatch is not actually optimal. 

3.3.4. Inter-Temporal Constraints 

Hogan's model, unlike some theoretical forms of the MIT model, is implicitly based 
on a single period, and does not explicitly account for inter-temporal constraints such as 
ramping requirements on thermal generating units and carryover of hydro storage. 

In the latter case, we might expect that hydro system managers will have specified 
half-hourly water values to the dispatchers, for each station37, and that these will be used to 
form price constraints in the model.  Alternatively, if the hydro system owners supply the 
dispatcher with river chain models, rather than with half hourly station water values, the 
dispatchers can expect to be responsible for determining water values which are internally 

                                                 

36 Again the issue of incentives arises since, ultimately, any dispatch can be "explained" by invoking 
enough constraints. 

37 These should not be confused with the long term water values specified for major storage 
reservoirs, though, and can not generally be determined from those by simply pro-rating, for 
instance. 
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consistent, and consistent with the dispatch, over the day.  Those water values would then 
provide the "offer" prices required by the pricing model. 

If this process has been carried out perfectly, and perfectly matches reality, the 
effects of all river chain constraints will be reflected properly in those prices, and there 
should be no discrepancies between the observed dispatch and the unconstrained dispatch 
which appears to be optimal at those declared water values.  With no discrepancies to 
explain, there should be no need to invoke additional constraints in the pricing model.  In 
reality, minor deviations from ex post optimality are bound to occur, but those can be 
handled by the methods discussed in Section 3.3.7 and Chapter 7. 

In principle, a similar approach can be applied to inter-temporal linkages in the 
thermal system, with the possible complication of integer restrictions, as discussed below.  
In this case, though, it is almost certain that the dispatcher will be required to optimise the 
dispatch to constraints, rather than to prices, and to provide prices which are consistent 
with that dispatch, ex post.  A priori, a ramping constraint could have the effect of 
lowering the effective marginal cost of supplying power in the period in which generation 
is lower, or of raising it in the period in which it is higher.  Thus one approach to resolving 
this issue would be to internalise it within a multi-period pricing model.  Alternative 
regimes which involve appropriate modifications to the offer prices assumed in each of the 
periods individually and/or a notional transfer payment between periods are discussed in 
Chapter 8.  In the mean time, it is suggested that, where such constraints are believed to be 
binding, they be treated as simple upper and lower bounds on generation in the relevant 
periods38.  Thus: 

•  If output from the generating unit in the example above was restricted because it was 
ramping up from a previous period or ramping down for the following period, it was 
effectively generating as much as it could, thus: 

Nodal energy price floor =2c/kW, no ceiling 

•  If output from the generating unit in the example above was restricted because it was 
ramping down from a previous period or ramping up for the following period, it was 
effectively generating as little as it could, thus: 

                                                 

38 Such constraints will effectively remove the affected generators from consideration as possible 
marginal generators in the calculation of prices.  This should ensure pricing consistency within 
periods, but not necessarily between periods. 
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Nodal energy price ceiling =2c/kW, no floor 

3.3.5. Changed, or Unforseen, Circumstances 

Uncertainty is an obvious, and pervasive, reason why dispatches are likely to appear, 
with hindsight, to have been sub-optimal.  The dispatcher will always have to prepare for 
contingencies that generally do not eventuate, and will incur costs in doing so.  In 
retrospect, those costs will most often appear not to be justified, because the contingency 
did not occur.  Conversely, if the contingency actually occurs, the provision made for it 
will most likely appear less generous than that which should have been made by a 
dispatcher with perfect foresight. 

Reserve requirements, which are discussed in a stochastic context in Chapter 9, 
provide a special case of this general phenomenon.  There are two possible approaches to 
reserve pricing, or more generally, to pricing under uncertainty, reflecting two possible 
interpretations of the ex post pricing philosophy: 

•  A strict approach to ex post pricing would insist that prices be based on dispatch 
outcomes, so that those generating companies which choose, or are required, to 
provide reserve would receive no reward, and hence incur and opportunity cost, 
unless a contingency actually occurred, in which case prices would have to rise to 
very high levels during this contingency.  For the case of node i, in the absence of 
losses, we could conclude that the price should satisfy the following conditions: 

  No Contingency: 

Combined nodal energy price/opportunity cost floor = ceiling 

=2c/kW 

Nodal energy price = system marginal cost =2.2c/kW 

  Contingency: 

Nodal energy price floor =2c/kW, no ceiling 

Nodal energy price = reserve price = system marginal cost 

(≥2.2c/kW)  
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•  A less strict approach would allow prices to be based on dispatch intentions, so that 
those generating companies which choose, or are required, to provide reserve would 
be paid a stand-by fee, irrespective of whether a contingency actually occurs or not, 
and may receive little or nothing extra during a contingency.  The payment of the 
stand-by fee effectively gives the dispatcher the right to dispatch those generating 
units covered by the fee.  For this case we have: 

 Contingency or no-contingency 

Stand-by free paid (no price bounds) 

Combined nodal energy price/opportunity cost floor = ceiling 

=2c/kW 

Nodal energy price = system marginal cost = 2.2c/kW 

In theory these could produce equivalent outcomes, with a low probability of very 
high contingency prices raising the expected reward for reserve providers in the first case 
to the same level as the reserve fee required in the second39.  We argue in Chapter 9, 
though, that the value which both dispatcher and dispatched are likely to place on ensuring 
some degree of certainty in this situation make the latter a more practical approach.  
Hence, in part, our preference for the term "dispatch based" pricing rather than ex post 
pricing. 

3.3.6. Integer Effects 

An issue which has received relatively little attention in this literature (except for S. 
Smith (1993)) is the integer nature of unit commitment decisions and their associated 
costs.  Strictly speaking, all of the dual analyses discussed here, and elsewhere in the 
literature, apply only on the assumption of a particular unit commitment pattern, and do 
not reflect the implications of any costs or constraints associated with unit commitment.  In 
practice, though, these costs and constraints can be quite significant, particularly in a small 
system such as that in New Zealand where, for example, the removal of one 250MW unit 
from the dispatch can make a significant difference to the calculated spot prices.  Further, 

                                                 

39 In both cases the rewards for reserve service must at least equal the opportunity costs of 
withdrawing megawatts from the energy dispatch before generators will be prepared to participate, 
or before such participation would be economically justified. 
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it will often be the case that prices calculated assuming the unit is on will suggest that it 
should be off, while those calculated assuming the unit is off will suggest that it should be 
on.  In such cases there is no set of energy prices which is strictly consistent with the 
observed dispatch, and the dispatcher must choose the best option on the basis of overall 
cost but, whatever choice is made, it will appear sub-optimal when evaluated at the ex post 
prices calculated for the observed commitment/dispatch.  This may also give the 
generating company grounds to claim compensation from the dispatcher.  This issue is 
addressed in Chapter 10. 

3.3.7. Truly Sub-Optimal Dispatch 

The final possibility to be considered is that a dispatch which appears to be sub-
optimal truly is.  In this case there simply is no internally consistent set of prices 
compatible with the observed dispatch, even after all actual, or possible contingent, 
constraints have been accounted for.  Two approaches are then possible.  We could assume 
that the dispatcher was not responsible to strictly optimise those aspects of the dispatch 
which still appear non-optimal, in which case we can produce a set of prices which are 
consistent with the rest of the dispatch, but which may have some negative commercial 
implications for some parties.  As mentioned above, this is the approach currently taken to 
reactive power and voltage pricing in New Zealand, for example.  Alternatively, we could 
assign responsibility to the dispatcher, and then find the "best compromise" prices40, 
defined as the internally consistent price set which minimises the (potential) liability of the 
dispatcher to compensate parties which are dispatched in an economically inconsistent 
manner.  This provides a much more robust pricing methodology than approaches which 
can only produce feasible price sets if the dispatch is actually optimal, for the constraints 
assumed.  For node i, the pricing problem can be expressed as follows: 

Minimise the compensation payment 

Combined nodal energy price/compensation payment floor = ceiling 

=2c/kW 

Nodal energy price = system marginal cost = 2.2c/kW 

                                                 

40 Refer to Chapter 7. 
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3.5. Conclusion 

The basic methodology of dispatch based pricing is to solve a linear programming 
problem which attempts to find prices which "explain" the observed dispatch.  This pricing 
process is driven by the observation of what appears to be out of merit order dispatch, and 
by the search for physical constraints which explain it, rather than by an attempt to monitor 
or reconstruct the dispatch processes themselves.  Nonetheless there is a very close 
relationship between the pricing problem and the original dispatch problem, and only 
explanations which make physical and economic sense will produce plausible prices.  This 
approach is conceptually similar to the models previous presented, but differs in the 
respect that the underlying philosophy is not built purely around mathematical duality 
theory, but about the condition that: 

Prices should be determined, after the fact, so as to be consistent with 
the observed dispatch, in the sense that they provide a rational 
economic explanation for it, given the price "floors" and "ceilings" 
expressed by the sellers and buyers in their pre-dispatch offers and 
bids. 

A mathematical model used to determine such prices is simply a tool to aid in 
determining internally consistent economic interpretations.  It can only explain the 
examples of OOMOD which are notified to it by setting price constraints corresponding to 
constraints on the dispatch.  Ultimately, though, the dispatcher must take responsibility for 
those choices, and can expect that other parties who are commercially affected may 
challenge these judgements. 

Even when all constraints which are believed to have been binding within the period 
are accounted for, some discrepancies are likely to remain.  These may be due to problems 
in interpreting the data, to constraints of a type not accounted for in the model, or which 
have not been properly communicated to the model, or to genuinely sub-optimal dispatch.  
For all of these reasons, it is recommended that an attempt be made to record dispatch 
intentions, at the time when decisions are made, and to use a mathematical model to arrive 
at as coherent an explanation of the dispatch as is possible, soon after the event. 

The key advantages of dispatch based pricing are that: 
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•  It protects the commercial interests of all parties, while allowing dispatchers, rather 
than being constrained by arbitrary "physical" contracting arrangements41, to control 
the system in a secure and economically rational way, knowing that the economic 
implications of that dispatch will be consistently reflected in prices which deliver 
commercial and economic benefits to all parties. 

•  It allows the physical and economic complexity of network operation to be reflected 
in prices to the extent that the most sophisticated market participants deem it to be 
commercially worthwhile, while allowing, and giving appropriate incentives to, all 
parties, possibly including the dispatcher, to act in response to the best, and most up-
to-date set of prices they find it worthwhile to obtain. 

•  It provides a single unified market place in which trade and competition are 
encouraged. 

                                                 

41 Although parties which, for whatever reason, would prefer not to make their resources fully 
available to the system and reap the commercial benefits of so doing, may still effectively opt out of 
merit order dispatch by limiting physical availability, or by specifying prices which are so low 
(high) as to imply "must run" ("never run") status. 
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Chapter 4 

A Dispatch Based Pricing Model42 

4.1. Introduction 

In this chapter we present a "basic" mathematical model for dispatch based pricing.  
This model ignores many of the dynamic effects in power systems, instead taking a 
"snapshot" of the system and assuming that this state applies for a full dispatch period.  
The pricing model developed for the New Zealand system is of this form, as are the 
formulations of Hogan (1991) and Schweppe et al. (1988)43.  For the time being we assume 
that the dispatch is optimal, while ignoring inter-temporal, integer, and stochastic effects. 
These assumptions will be relaxed in later chapters. 

A standard engineering tool for determining the state of a power system at a given 
point in time is the Optimal Power Flow (OPF) problem (Huneault and Galiona, 1991).  
The OPF problem involves optimising some objective function while satisfying constraints 
on generation, transmission and system operations in general.  Like Hogan, we use the 
OPF as a starting point for determining dispatch based prices.  In fact, the model presented 
in this chapter is very similar to Hogan's, though we argue that our representation of the 
problem is somewhat more general.  We describe the key features of the OPF problem, as 
well as a dispatch based pricing model corresponding to it.  The economic interpretation of 
the pricing problem, which is derived in Appendix A, is explored.  A brief description of 
the version of this model implemented by Trans Power (NZ) Limited is also described.  
The model presented in this chapter provides a theoretical basis upon which discussions in 
later chapters can be based. 

                                                 

42 This chapter is based on Read and Ring (1995b). 

43 It could be argued whether the original homeostatic proposal of Schweppe et al., which allows for 
pricing intervals which are of the order of seconds, is strictly a snapshot approach or not.  However, 
for practical reasons, this model is unlikely to be applied to such short intervals in practice.  
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4.2. The Primal Formulation 

4.2.1. The Primal Variables 

The primal variables we refer to in this formulation are: 

•  PGi  and QGi , the active and reactive power generation levels, respectively, for node i. 

•  PDi  and QDi , the active and reactive load levels, respectively, for node i. 

•  P P Pi Gi Di= −  and Q Q Qi Gi Di= − , the net nodal active and reactive power injections, 

respectively, for node i.  

•  θi , the phase angle at node i. 

•  Vi , the voltage magnitude at node i. 

•  xA , general variable A .  This variable is assumed to be a dependent variable in this 

chapter but is used to denote both independent and dependent variables in Chapter 7. 

4.2.2. Sets Used to Distinguish Nodes 

In his model, Hogan treated the nodal active and reactive power injections as his 
independent variables, or basis.  We refer to that representation as a PQ representation. 
However, as explained by Wood and Wollenberg (1984), a more generally set of 
independent variables can be defined in terms of a combination of active and reactive 
power injections, and voltage magnitudes and phase angles.  We defined the nature of 
nodes in terms of the variables which are independent there.  Thus we define: 

•  PV nodes:  At these nodes the net active power injection, Pi  and voltage magnitude, 
Vi , are independent variables while the net reactive power injection, Qi , and phase 
angle, θi , are free to take values which optimise system performance while satisfying 

the physical constraints on the dispatch.  These nodes are typically generator nodes.  
Mathematically, PV nodes are associated with the set PV. 

•  PQ nodes: At these nodes Pi  and Qi  are independent variables while Vi  and θi  are 

free to vary as required.  These nodes are typically demand nodes.  Mathematically, 
PQ nodes are associated with the set PQ. 

•  The Swing Bus: The swing bus is indicated by the "set" S or the index s.  At this 
node Vs  and θs  are the independent variables while Ps  and Qs  vary freely so as to 
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ensure the conservation of both active and reactive power.  The value of Vs  is 
important as it influences the level of system losses, but the value of θs  is arbitrary as 

only the difference between phase angles at different nodes matters, not the actual 
magnitude.  

As the value of the only independent phase angle, being that at the swing bus, is 
arbitrary we refer to this representation as a PVQ representation.  As derivatives with 
respect to a particular variable in Hogan's PQ representation may be different from that in 
the PVQ representations we use a superscript "A" to indicate functions which are expressed 
in terms of the PVQ representation while, when appropriate, a "B" is used to indicate the 
PQ representation.  The absence of such a superscript indicates that the function is 
expressed in terms of the basis formed by the nodal voltage magnitudes and phase angles 
(which together form voltage phasors).  This later "Vθ" basis is the "natural" basis for 
expressing power flow equations.  Hogan (1991) and Read, Ring, and Rosevear (1995) 
describe the functional forms of power injections, losses, and transmission flows in terms 
of the Vθ basis and discuss the procedure for converting between the various bases. 

In addition to the sets defined above, it is convenient to define the following 
combinations of sets: 

•  ( )PQPVPX ∪= : The set of all the non-swing bus nodes. 

•  ( )SPXPXS ∪= : The set of all nodes. 

•  ( )SPVPVS ∪= : The set of all nodes at which the reactive power injection is a 

dependent variable.  

•  ( )SPQPQS ∪= : The set of all nodes at which voltage magnitude is a dependent 

variable. 

The dispatch problem described below includes some general constraints and 
variables.  These belong to the sets: 

•  NN: The set of all general constraints. 

•  ND: The set of otherwise unspecified general dependent variables. 

4.2.3. The Optimal Power Flow (OPF) Problem 

An OPF formulation corresponding to our PVQ representation, in standard canonical 
form, is described by (4.1) to (4.14).  The dual multipliers for each constraint are shown on 
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the right.  A superscript on a vector indicates the set of nodes each vector belongs to, and 
hence its dimensions. 

 ( )NDPXSPXSC
NDPXSPXSPXSPXSPXS

x,QP GG
xVQPQP ,,G,G,D,D

,Minimise   (4.1)  

subject to: 

 Conservation of Power 

 ( ) ( )PVSPQPQPXPXA
P

PXSi
DiGi LPP V,QQ,PP DGDG −−−−∑

∈

 = 0 :λ P  (4.2) 

 ( ) ( )PVSPQPQPXPXA
Q

PXSi
DiGi LQQ V,QQ,PP DGDG −−−−∑

∈
 = 0 :λ Q  (4.3) 

 Dependent Reactive Power Injection at PV Nodes 

 ( ) ( )DiGi
PVSPQPQPXPXA

i QQQ −+−−− V,QQ,PP DGDG  = 0 :µQi   ∀ ∈i PV  (4.4) 

 Dependent Voltage Magnitude at PQ Nodes 

 ( ) i
PVSPQPQPXPXA

i VV +−−− V,QQ,PP DGDG  = 0 :µVi   ∀ ∈i PQ  (4.5) 

 Generalised Constraints 

 ( )NDPXSPQSPQSPXSPXSA
hH x,V,Q,Q,P,P DGDG  = 0 :νh  ∀ ∈h NN  (4.6) 

 Active and Reactive Generation and Voltage Bounds 

 −PGi  ≥−PGi
max  :υPi

+  ∀ ∈i PXS  (4.7) 

 PGi  ≥ PGi
min  :υPi

−  ∀ ∈i PXS  (4.8) 

 −QGi  ≥−QGi
max  :υQi

+  ∀ ∈i PXS  (4.9) 

 QGi  ≥ QGi
min  :υQi

−  ∀ ∈i PXS  (4.10) 

 −Vi  ≥−Vi
max  :υVi

+  ∀ ∈i PXS  (4.11) 

 Vi  ≥ Vi
min  :υVi

−  ∀ ∈i PXS  (4.12) 

 Active and Reactive Power Load Settings 

 PDi  = PDi
set  :βPi  ∀ ∈i PXS  (4.13) 

 QDi  = QDi
set  :βQi  ∀ ∈i PXS  (4.14) 
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The Independent and Dependent Variables 

In vector notation, where the superscript describes the dimension, the variables in 
this OPF formulation are PG

PXS , PD
PXS , QG

PXS , QD
PXS, V PXS , and xND  where the independent 

variables are PG
PX , PD

PXS , QG
PQ , QD

PXS, V PVS  while the dependent variables are PGs , QG
PVS , V PQ, 

and xND .  We include generation variables at demand nodes, and demand variables at 

generator nodes, even if these will always have zero values, so as to allow us to determine 
the prices for these commodities if they were to be available there.  Many OPF functions 
are only dependent on the net nodal power injections, rather than nodal generation and 
demand separately.  Hence, even if one of either generation and demand at a node is an 
independent variable, the net combination of the two may still be a dependent variable.  In 
particular the swing bus active and reactive power net injections (P P Ps Gs Ds= −  and 
Q Q Qs Gs Ds= − ) are dependent variables, as are the reactive power injections at PV nodes 
(Q Q QG D

PV PV PV= − ).  More technical features, such as tap changing transformer settings 

(which are independent variables), are not considered here but have been incorporated into 
the pricing model employed in New Zealand (Read et al., 1995). 

The Objective Function 

The objective function, (4.1), represents the minimisation of the total cost associated 
with operating the power system44.  This differs from Hogan's formulation in that Hogan 
assumed an objective of maximising total welfare.  Our approach is equivalent however, as 
we have introduced constraints defining the observed nodal demand levels for both active 
and reactive power as being fixed ((4.13) and (4.14))45.  These constraints define the price 
multipliers which correspond to Hogan's benefit function derivatives. Our formulation has 
the advantage of being more consistent with the engineering interpretation of the OPF 
problem.   

A fuel cost is assumed for both active and reactive power generation.   In minimising 
the value of this objective function it is necessary that the constraints which follow are 
satisfied. 

The Power Conservation Equations 

The conservation of power equations, (4.2) and (4.3), impose the requirement that 
total generation must equal total demand plus losses for both active and reactive power.  

                                                 

44 Stott et al. (1987) discuss a range of possible OPF objective functions. 

45 Although fixed, these are still regarded as independent variables. 
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The swing bus must react in real time to ensure this condition is satisfied.  Total system 
active power losses are described by the function ( )PVSPQPQPXPXA

PL V,QQ,PP DGDG −−  while 
( )PVSPQPQPXPXA

QL V,QQ,PP DGDG −−  describes total reactive power losses.  Both these 

functions are represented as being dependent on the independent net nodal power 
injections and all the independent voltages.  

The Dependent Reactive Power Injections at PV Nodes 

At PV nodes the net injection of reactive power, Q Q Qi Gi Di= −  ∀ ∈i PV , is defined 

by the independent variables.  Hence (4.4) defines these injections in terms of those 
variables via the function ( )PVSPQPQPXPXA

GiQ V,QQ,PP DGDG −−  ∀ ∈i PV .  The levels of load 

and generation at these nodes are not individually fixed by these constraints but their 
difference is. 

The Dependent Voltage Magnitudes at PQ Nodes 

Similarly, at PQ nodes the voltage terms, Vi , ∀ ∈i PQ  are also dependent on the 

independent net nodal injections and voltage variables.  Equation (4.5) represents this 
dependence using the function ( )PVSPQPQPXPXA

iV V,QQ,PP DGDG −− . 

The Generalised Constraints 

Constraint (4.6) is a general constraint which in later chapters will be used to 
examine the effects on prices of several specific constraints.  The function 

( )NDPXSPQSPQSPXSPXSA
hH x,V,Q,Q,P,P DGDG  is dependent on all the variables so as to allow any 

relationship between these variables to be represented, and consequently can have the 
effect of reducing the size of the set of independent variables.  This constraint can also 
define both the functional form of, and the bounds on, the general dependent variables 
xND .   

Active and Reactive Generation and Voltage Bounds 

The bounds (4.7) to (4.12) place constant upper (indicated by max) and lower bounds 
(indicated by min) on values that each of the variables in the model can take.  By setting 
the upper and lower bounds to be identical we can fix the values of variables externally to 
the OPF problem. 

The Load Setting Constraints 

The load setting constraints, (4.13) and (4.14) fix the levels of active and reactive 
power demand at all nodes, i.e., the demands are set externally to the dispatch problem.  
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For an optimal observed setting of these values, therefore, the shadow price on each of 
these bounds should equal the price determined by a welfare maximising objective 
function when demand is not fixed.  Note that fixing reactive power demand at a node still 
allows the total net reactive power injection at that node to vary if reactive generation can 
be varied.  Demand has been fixed to simplify the discussion, but could be optimised like 
generation if required. 

4.2.4. Convexity of the Primal OPF 

We assume that the primal OPF is, at least, locally convex about an observed 
solution.  While the equality constraints in (4.2) to (4.6) make them appear non-convex, 
this limitation can be overcome in most situations.  Firstly, we explicitly assume that (4.6) 
is convex, though allow it to have non-differentiable points.  Secondly, the OPF is solved 
with a fixed set of generating units dispatched, and with at least one being a slack variable, 
so the energy conservation constraints, (4.2) and (4.3), can be viewed as inequalities 
(Glavitsh, 1992).  There is no certainty that (4.4) and (4.5) are convex, but Hogan, Read, 
and Ring (1995) observe that local non-convexity only appears to be an issue in lightly 
loaded power systems, and that, in this event, the corresponding power flow may be only 
locally optimal.  While this may have some revenue implications for the grid owner, which 
collects economic rents from the dispatch, these can always be offset by separate fixed cost 
recovery mechanisms.  We adopt the conjecture of Hogan et al. that under normal 
operating conditions the impact on the spot market of non-convexities will be minimal.  

4.3. The Dual Pricing Formulation 

4.3.1. The Mathematical Form of the Dual 

We can form a pricing model by linearising the OPF of (4.1) to (4.14) and forming 
its dual.  This dual, which is derived in Appendix B, is described by equations (4.15) to 
(4.24).  The definitions of all the new terms are given in the discussion which follows. 
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 βVi =  − − − − −
∈ ∈ ∈
∑ ∑ ∑λ ∂

∂
λ

∂
∂

µ ∂
∂

µ ∂
∂

ν ∂
∂P
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L
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V

Q
V

V
V

H
V

  ∀ ∈i PVS  (4.18) 

 µQi =  β λ ν ∂
∂Qi Q h

h
A

A
Dih NN

H
Q

− +
∈
∑   ∀ ∈i PV  (4.19) 

 µVi =  β ν ∂
∂Vi h

h
A

A
ih NN

H
V

−
∈
∑   ∀ ∈i PQ  (4.20) 

 c H
PPi Pi h

h
A

A
Gih NN

− −
−

∈

− + ∑υ ν ∂
∂
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∂Pi h
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∑  ≤ c H

PPi Pi h
h
A

A
Gih NN
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+

∈
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∂

  ∀ ∈i PXS  (4.21) 

 c H
QQi Qi h

h
A

A
Gih NN

− −
−

∈

− + ∑υ ν ∂
∂

≤   β ν ∂
∂Qi h

h
A

A
Dih NN

H
Q
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∑  ≤ c H

QQi Qi h
h
A

A
Gih NN

+ +
+
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+ − ∑υ ν ∂
∂

  ∀ ∈i PXS  (4.22) 

   βVi= υ υVi Vi
+ −−    ∀ ∈i PXS  (4.23) 

 c H
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h NN

A
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A
h NN
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  ∀ ∈A ND (4.24) 
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4.3.2 The Pricing Objective Function 

The pricing objective function (4.15) is stated as having an arbitrary form46 because, 
by Theorem A.2. in Appendix A, if the primal dispatch solution is already known, and if it 
is optimal, then the dual objective function is arbitrary as long as the complementary 
slackness conditions are imposed directly.  The latter condition is enforced in this dual by 
the z  notation which states that the term z  only appears in the model if the primal 
constraint it corresponds to is binding.  Ring, Read, and Drayton (1993) conclude that the 
only role that the dual objective function serves is to determine how the total wealth, which 
is fixed given the observed primal solution, is distributed between the market players, and 
hence that the choice of objective is ultimately a policy issue.  If the dual solution is not 
degenerate, which can be expected to be the normal situation, then the arbitrary pricing 
objective function plays no role in determining the pricing solution. 

Some possible pricing objective functions are discussed by Read and Ring (1995b).  
They discuss objective functions which either minimise or maximise the rent collected by 
the grid owner.  While there is no obvious "best" choice of objective function, the former 
approach maximises the cumulative rent collected by the market players, while the latter 
approach provides a non-distortionary way of reducing the additional fixed charges 
required if all transmission network costs are to be recovered.  

4.3.3. Active Power Pricing Relationships 

Equation (4.16) describes the price for active power demand at all nodes.  The swing 
bus net active power injection (P P Ps Gs Ds= − ) is a dependent variable so all the derivatives 

in (4.16) with respect to this net injection are zero.  Consequently, the only non-zero 
derivative for the swing bus is that of the general constraint, i.e.: 

 βPs = λ ν ∂
∂P h

h
A

A
Dsh NN

H
P

−
∈
∑   (4.25) 

That is, the active power price at the swing bus is just the "unit lambda", λ P , which, as the 
shadow price on the active power energy conservation constraint, describes the marginal 
value of active power at the swing bus47, modified by the impact of the swing bus on any 
                                                 

46 And hence the choice of whether it is maximised or minimised is arbitrary. 

47 In practice it is possible to treat any node as a "swing bus" for pricing purposes but the price at that 
node must be equated to that nodes "unit lambda".  The price at each node which is a marginal 
source of active power is then just the pricing swing bus "unit lambda" modified by the marginal 
cost of losses and constraints involved in (notionally) transmitting one more unit of power from the 
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general constraints.  No other terms appear because changes in (notional) demand at the 
swing bus are assumed to be made up at the swing bus and hence have no impact on the 
network.  If there were no binding general constraints then λ P  would be the price at the 
swing bus. 

The active power price at the non-swing bus nodes can be re-expressed as: 

 βPi = ∑∑∑
∈∈∈
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We can conclude that a unit increase in active power demand at each node results in 
five types of costs: 

•  The first term on the left is just the cost of actually supplying that extra unit of active 
power at the swing bus, whether by generating it there or by importing it from the 
marginal node(s). 

•  The second term, 









+−

i
A

A
Q

Q
i

A

A
P

P P
L

P
L

∂
∂

λ
∂
∂λ , reflects marginal cost of the additional 

power required at the swing bus to make up for the losses (both active and reactive) 
resulting from the transmission of that power. 

•  The third term, ∑
∈

−
PVn i

A

A
n

Qn P
Q

∂
∂µ , describes the cost (or benefit) of increasing (or 

decreasing) pressure on binding reactive power bounds at PV nodes. 

•  The fourth term, −
∈
∑ µ ∂

∂Vn
n
A

A
in PQ

V
P

, describes the cost (or benefit) of increasing (or 

decreasing) pressure on binding voltage bounds at PQ nodes. 

•  The fifth term, −
∈
∑ ν ∂

∂h
h
A

A
Dih NN

H
P

, describes the cost (of benefit) or increasing (or 

decreasing) pressure on a binding general constraint which is functionally dependent 
on active power demand at that node. 

The last three cost components are discussed further below. 

                                                                                                                                                    

pricing swing bus to the marginal node.  By definition, the resulting price at a unique marginal node 
must be the so called "system lambda". 



Chapter 4: A Dispatch Based Pricing Model 55 

 

Equation set (4.21) places bounds on the feasible values that the price for active 
power demand can take at all nodes.  In the absence of binding general constraint terms 
these become: 

 c cPi Pi Pi Pi Pi
− − + +− ≤ ≤ +υ β υ  ∀ ∈i PXS  (4.27) 

Here the terms cPi
−  and cPi

+  are, respectively, the marginal costs of the last unit of 

active power generated at node i and the next unit of active power that could be generated 
there48.   

If no generating unit bounds are binding at node i then υ υPi Pi
− += = 0  and, before 

solving the pricing problem, we can set υ υPi Pi
− += = 0 .  Thus, at node i, we have: 

 c cPi Pi Pi
− +≤ ≤β   (4.28) 

That is, the price paid for active power at node i must be consistent with the observed cost 
of generation at that node.  If this were not the case then either a generating unit would be 
producing its last unit of generation at a loss (βPi Pic≤ − ) or failing to produce a profitable 
additional unit of generation (cPi Pi

+ ≤ β ).  If we were to have c c cPi Pi Pi= =− + , with no 

generating unit bounds binding at node i, then the price at that node must exactly equal the 
generation cost.  Note that if a generating unit is partially loaded it is not necessarily 
marginal unless c cPi Pi

− += .  This is because, if c cPi Pi
− +< , then there might be partially loaded 

generating units which could meet an increase in load more cheaply, or save more money 
by reducing output in response to a decrease in load. 

We now consider what happens when active power generation at node i is 
constrained.  Duality theory dictates that in this situation υPi

+ ≥ 0 or υPi
− ≥ 0 , depending on 

which bound is binding.  The value of υ Pi
+  reflects the change in the cost of running the 

system if we relax a binding upper bound on generation.  If the upper bound were relaxed 
by one unit the cost of operating the system would fall, as less power would be required 
from more expensive sources.  Thus the change in the cost of operating the system is 
negative.  However, we have defined the primal constraint as − ≥ − ++P P PGi Gi

max
Gi
* , so υPi

+  

actually describes the negative value of a change in the upper bound.  Hence the value of 
υ Pi

+  must be positive to reflect this decrease in the system operating cost.  If the upper 
bound were not limiting the generating unit's output then we would have υ Pi

+ = 0.   

Similarly, the value of υ Pi
−  reflects the value of changing a generating unit's lower 

bound.  We have defined the primal constraint as − ≥ −−P P PGi Gi
min

Gi
*  so υ Pi

−  describes the 

                                                 

48 These cost terms could be used to represent demand side bids, if required. 
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positive value of a change in the lower bound.  Increasing a binding lower bound on 
generation means that we are forced to generate power which we do not want to produce, 
presumably because this generation is not profitable.  Hence the change in system cost 
from increasing the bound is positive, so υ Pi

−  is positive. 

From (2.27) we see that with either υ Pi
− > 0  (generation at lower bound) or υ Pi

+ > 0  
(generation at upper bound) βPi  can take values outside the range defined by the 

generation costs.  For example, a generating unit may have its output limited by its upper 
bound, implying υPi

+ > 0.  The marginal fuel cost of this generating unit is cPi
+ =$10/MW, 

but consistency with other prices requires βPi=$15/MW.  We can find consistent prices for 
this situation by setting υ Pi

+ =$5/MW. 

The inclusion of the general constraints further modifies the range of feasible prices.  
These modifications are discussed in the context of specific constraints described in later 
chapters. 

4.3.4. Reactive Power Pricing Relationships - PQS Nodes 

The prices of reactive power at PQS nodes are similar to those for active power.  
Again, the swing bus price has a simpler form than the other equations in (4.17) as the net 
injection of reactive power is again a dependent variable: 

 βQs = λ ν ∂
∂Q h

h
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A
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The price at each of the PQ nodes, where the net injections of reactive power are 
independent variables, can be re-expressed as:   
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As for the active power prices, we can group the costs associated with a unit increase in 
demand for reactive power at one of the PQ nodes as follows: 

•  The first term on the left, λ Q, is the reactive power analog of the active power unit 

lambda, and is just the cost of actually supplying that extra unit of reactive power at 
the swing bus, whether by generating it there or by importing it. 
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•  The second term, 









+−

i
A

A
Q

Q
i

A

A
P

P Q
L

Q
L

∂
∂

λ
∂
∂λ  reflects marginal cost of the additional 

power required at the swing bus to make up for the losses (both active and reactive) 
resulting from the transmission of that power. 

•  The third term, −
∈
∑ µ ∂

∂Qn
n
A

A
in PV

Q
Q

, describes the cost (or benefit) of increasing (or 

decreasing) pressure on binding reactive power bounds at PV nodes. 

•  The fourth term, −
∈
∑ µ ∂

∂Vn
n
A

A
in PQ

V
Q

, describes the cost (or benefit) of increasing (or 

decreasing) pressure on binding voltage bounds at PQ nodes. 

•  The fifth term, −
∈
∑ ν ∂

∂h
h
A

A
Dih NN

H
Q

, describes the cost (of benefit) or increasing (or 

decreasing) pressure on a binding general constraint which is functionally dependent 
on reactive power demand at that node. 

The bounds on the reactive power prices are defined by (4.22).  The explanation of 
these bounds is entirely analogous to the explanation for the active power price bounds. 
However, it may occur that reactive power can be produced at no cost.  In this situation, 
and in the absence of general constraints, (4.22) can be written as: 

 β υ υQi Qi Qi= −+ −   (4.30) 

While this form does not directly follow from (4.22), the price must either equal the 
multiplier on the upper bound or the negative of the multiplier on the lower bound.  If no 
bounds are binding on reactive power generation then the price is zero.  Alternatively, if 
reactive bounds are binding, then the price will take what ever value is consistent with the 
dispatch.  In particular, this latter case applies if reactive power injections are set 
externally to the OPF, rather than being optimised.  

4.3.5. Reactive Power Pricing Relationships - PV Nodes 

At PV nodes reactive power injections are dependent variables, much like the swing 
bus reactive power injection.  By re-arranging (4.19), and assuming no general constraints 
are binding, the reactive power price at these nodes can be described as: 

 β λ µQi Q Qi= +  ∀ ∈i PV  (4.31) 

Since µQi , the multiplier on the OPF constraint defining the dependence of the reactive 

injections at PV nodes on the independent variables, may be positive or negative, this 
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equation merely allows βQi , to take on whatever value is required, independent of λQ .  
Obviously, if µQi = 0 for some subset of PV nodes, then we have β λQi Q= , reflecting the 

fact that each of these nodes plays the same role as the swing bus in meeting increases (or 
decreases) in reactive power demand and losses. 

However, βQi  may have to differ from βQs  for several reasons.  First, the bounds 

imposed by the reactive power generation costs at these nodes, described by (4.22), may 
force a difference.  Second, as for PQ nodes, υQi

+  and υQi
−  may allow βQi  to vary if reactive 

power generation is constrained at this node.  Finally, the actual value of βQi  will be 

driven, subject to the above considerations, by the need to obtain consistent prices for the 
other commodities for which it appears in price equations or, if there is any choice in the 
matter, by the objective function. 

4.3.6. Voltage Pricing Relationships - PVS Nodes 

The equations describing active and reactive power injections, line flows, and losses 
as functions of nodal voltage magnitudes and phase angles (i.e., the Vθ basis described 
above) reveal a quadratic dependency of the former terms on voltage (Read, Ring, and 
Rosevear, 1995).  In practice, this gives rise to a non-trivial relationship between voltage 
settings and the cost of running a power system.  Bohn, Caramanis and Schweppe (1984) 
noted this effect and observed that in principal prices could be applied to voltages.  If such 
prices could be used as a means of encouraging modifications in voltage levels than 
significant savings could potentially be made.  Boshier (1974) reinforces this argument by 
concluding that the optimisation of voltage levels in New Zealand could, at that time, 
reduce generation costs by 0.25% to 0.75% .  On the demand side, Dias and El-Hawary 
(1990) observe that when active and reactive loads are modelled as functions of voltage the 
total fuel cost of a system could be reduced by keeping voltages as low as possible within 
allowable limits.  The significance of these result is that voltage pricing information may 
be valuable in achieving optimal resource usage in power systems. 

Unlike nodal power injections, voltage does not consist of a "demand" component 
and a "generation" component.  Mathematically, therefore, a voltage price can either be 
modelled analogously to generation, making a positive "net injection" of voltage, or to 
demand, making a negative "net injection".  It seems preferable, however, to adopt a 
definition corresponding to pricing the "net demand" for voltage, in a manner consistent 
with prices determined for active and reactive power net injections.  Thus we introduce a 
voltage price analogously to active and reactive power prices, as shown in (4.18).  This can 
be re-expressed as: 
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The components of this equation can be described as follows: 

•  The zero immediately to the right of the equality sign indicates that there is no direct 
energy cost associated with additional units of voltage. 

•  The second term, 

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
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∂
∂λ  reflects marginal cost of the additional 

power required at the swing bus to make up for the losses (both active and reactive) 
resulting from a change in voltage. 

•  The third term, −
∈
∑ µ ∂

∂Qn
n
A

A
in PV

Q
V

, describes the cost (or benefit) of increasing (or 

decreasing) pressure on binding reactive power bounds at PV nodes. 

•  The fourth term, −
∈
∑ µ ∂

∂Vn
n
A

A
in PQ

V
V

, describes the cost (or benefit) of increasing (or 

decreasing) pressure on binding voltage bounds at PQ nodes. 

•  The fifth term, −
∈
∑ ν ∂

∂h
h
A

A
ih NN

H
V

, describes the cost (of benefit) or increasing (or 

decreasing) pressure on a binding general constraint which is functionally dependent 
on voltage at that node. 

The prices defined by (4.32) are constrained by those voltage price bounds of (4.23) 
which correspond to PVS nodes.  That is: 

 βVi= υ υVi Vi
+ −−  ∀ ∈i PVS  (4.33) 

It may be seen that this equation has a similar form to the bounds on βPi  and βQi  (i.e. (4.21) 

and (4.22)), but without any marginal cost terms (as none are assumed) or general 
constraint derivatives (which only appear in the voltage "demand" derivative of (4.18)).  If 
voltage has been freely optimised, with neither upper or lower bounds binding, then 
υ υVi Vi

− += = 0  and we require that: 

 βVi = 0 ∀ ∈i PVS  (4.34) 

Otherwise, υVi
+  and υVi

−  allow βVi  to be non-zero, just as for the prices for costless reactive 
power .  In particular, if Vi  has been set externally to the dispatch, then βVi  is unrestricted 

in sign. 
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4.3.7. Voltage Pricing Relationships - PQ Nodes 

The arguments for calculating voltage prices at PVS nodes apply equally to PQ 
nodes, though the pricing relationships, described by (4.20), are much simpler.  In the 
absence of binding general constraints these relationship simplify to: 

 µVi =βVi  ∀ ∈i PQ  (4.35) 

Since µVi , the multiplier on the constraint defining the dependent voltages, is 

unconstrained in sign, (4.35) simply states that the voltage price is free to take any value, 
subject only to those bounds in (4.23) which apply to PV nodes.  That is: 

 βVi= υ υVi Vi
+ −−  ∀ ∈i PQ  (4.36) 

Thus, in the absence of binding general constraints, the value associated with 
constrained, dependent voltage is completely defined by the dual variables corresponding 
to the upper and lower bounds on these terms.  As for PVS nodes, these prices will be zero 
if no voltage bounds are binding. 

4.3.8. Pricing for the General Dependent Variables 

Equation (4.24) describes the price bounds on a general dependent variable, xA , 
where cxA

−  and cxA
+  are, respectively, the costs of the last and next units of variable xA .  This 

price bound may appear to have a fundamentally different form to those for active and 
reactive power, but this is just an artefact of its generality.  For instance, some of the 
primal general constraints may include upper and lower bounds on the xA .  If this is the 
case then we could transform those terms into a price for the xA .  For example, for a given 
variable xA  we could separate out two such terms from the sum of general constraint 

derivatives to give: 
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We might also, for example, have a term satisfying: 
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A x
A A

A− += =   (4.38) 

Here α xl  is an arbitrary dual multiplier.  With these expressions we could re-express the 
price bounds associated with this xA  as: 
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This price bound is analogous to those for active and reactive power prices. 

Equation (4.24) can also be simplified, for a given xA , if all the general constraints 
are continuous and differentiable with respect to xA , and if no marginal cost appears in the 
primal objective function for xA .  In this instance (4.24) reduces to: 

 ν ∂
∂h

h
A

A
h NN

H
xA∈

∑ = 0  (4.40) 

4.4. An Alternative Pricing Model Form 

4.4.1. Derivation of Alternative Model 

The pricing model presented in (4.15) to (4.24), like past models, involves a great 
deal of complexity which obscures much of the underlying structure of the problem.  
Fortunately, it is possible to transform this result to remove much of this complexity.  For 
simplicity, we initially assume that none of the general constraints are binding, allowing us 
to eliminate the corresponding terms from the dual.  The resulting formulation is shown in 
(4.41) to (4.49). 



Chapter 4: A Dispatch Based Pricing Model 62 

 

 Minimise
0

0
       
     

    Arbitrary Objective Function
υ υ υ

υ υ υ
µ µ β β

P
PXS

Q
PXS

V
PXS

P
PXS

Q
PXS

V
PXS

P Q Q
PV

V
PQ PXS PXS

, ,
, ,

, , , ,

+ + +

− − −

≥
≥

λ λ , P Q

 (4.41) 
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 µQi = β λQi Q−  ∀ ∈i PV  (4.45) 

 µVi =βVi  ∀ ∈i PQ  (4.46) 

  cPi Pi
− −− υ ≤βPi ≤ cPi Pi

+ ++ υ   ∀ ∈i PXS  (4.47) 

  cQi Qi
− −− υ ≤βQi ≤ cQi Qi

+ ++ υ   ∀ ∈i PXS  (4.48) 

  βVi = υ υVi Vi
+ −−   ∀ ∈i PXS  (4.49) 

We can simplify this result by substituting so as to eliminate the µQi  and µVi  terms 
and by grouping the resulting terms which are multiplied by λ P and λ Q .  This result can be 

further simplified by observing that the OPF power energy conservation constraints can be 
presented in the form: 
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   (4.50) 
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∈∈

  (4.51) 

When determining the active power price at node i we assume a unit change in 
injection there, while keeping all other independent variables fixed.  The only things that 
can respond to this change are the dependent variables, namely the swing bus injections, 
active and reactive losses, and the dependent reactive power injections at PV nodes and 
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dependent voltages at PQ nodes.  This means that the derivatives of the equations defining 
the swing bus active and reactive power injections must be49:  
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Further, since all derivatives with respect to the swing bus injections must be zero, 
we can conclude from (4.42) and (4.43) that the swing bus active and reactive power prices 
are given by: 

 cQi Qi
− −− υ   (4.58) 

 β λQs Q=   (4.59) 

Using these relationships we can re-express the pricing problem as shown in (4.60) 
to (4.66). 

                                                 

49 There is no derivative with respect to the swing bus active power injection itself as, being a 
dependent variable, that derivative is zero. 
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  cPi Pi
− −− υ  ≤  βPi  ≤  cPi Pi

+ ++ υ   ∀ ∈i PXS  (4.64) 
  cQi Qi

− −− υ  ≤  βQi  ≤  cQi Qi
+ ++ υ   ∀ ∈i PXS  (4.65) 

  βVi= υ υVi Vi
+ −−   ∀ ∈i PXS  (4.66) 

The interpretation and significance of these equations are explored in the remainder 
of this section. 

4.4.2. The Swing Bus 

In this form the role of the swing bus reactive power generation is revealed to be no 
different from that of any other node at which the reactive power injection is a dependent 
variable.  It is, though, the only node at which active power generation can vary in 
response to a change in the independent variables.  We note that active power prices 
should be invariant to the choice of swing bus provided that the system is constrained in an 
identical manner in each case.  In reality, a change in power injection at node i will be 
matched by changes at some marginal node(s), rather than at the swing bus.  Conceptually, 
we can view the swing bus as responding to the change in injection at node i, and then 
responding independently to the change at the marginal node(s), the net effect being to 
produce no change in injection at the swing bus (as required by power conservation), 
making the swing bus an arbitrary reference point at which a hypothetical transaction 
occurs.  Intuitively, the same result should apply to reactive power provided that the 
reactive power swing bus is chosen from among those nodes at which the reactive power 
injection is free to vary50. 

                                                 

50 This argument rests, though, on the assumption that Qi  will react to changes in the same way when i 
is a dependent, non-swing bus, injection (i.e. i is a PV node) as it does when i is the swing bus (i.e. a 
Vθ  node) and/or that the optimality conditions of the problem ensure that the net impact of reactive 
changes, at nodes other than the two directly involved, will cancel out to give the same cost, 
irrespective of any variation in the way those changes are apportioned between nodes.  These 
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4.4.3. Relationship Between Primal Constraints and Dual Variables 

Standard optimisation theory dictates that each additional dual constraint makes it 
potentially more difficult to find a feasible solution to the dual, that is to find a set of prices 
which make all parties satisfied.  Each primal constraint, on the other hand, introduces a 
new dual variable, giving the dual an extra degree of freedom and hence increases the 
range of feasible solutions, making the dual easier to solve.  Basically, the existence of 
primal constraints makes it possible for the dispatcher to "explain" what would otherwise 
appear to be non-economic dispatches, in ways which are commercially satisfactory to the 
parties involved. 

Thus there is a one-to-one relationship between the binding dual variables and primal 
constraints.  For an AC power system, the simplest OPF problem would be one where the 
only constraints (other than bounds on generation, voltage, and demand) were the 
constraints requiring the conservation of active and reactive power.  The corresponding 
dual problem defines the prices of active and reactive power at a node51 in terms of their 
marginal system costs with the marginal losses adjusting these prices to produce nodal 
prices for the independent primal active and reactive power and voltage variables at all 
other nodes.  This is the so called "loss differential solution".   Beyond that, for each 
binding price constraint added to the model there must be at least one primal constraint 
added so that the shadow price on that constraint can modify the price pattern so as to 
explain the observed out of merit order dispatch (OOMOD).  In practice, however, if the 
primal constraint added is not the constraint which actually caused the OOMOD 
potentially bizarre prices can result.  Obviously, the incentives which a dispatcher might 
have to generate such "explanations", particularly where dispatch was actually sub-
optimal, must be carefully considered and controlled.  Capacity rights are an appropriate 
mechanism to provide this discipline, as discussed in Chapter 7.   

4.4.4. Relationship Between Independent and Dependent Variables 

An examination of the constraints in (4.61) to (4.63) reveals that the price for each of 
the independent primal variables can be expressed as a linear combination of the prices for 
the dependent primal variables weighted by the impact which varying the primal 
independent variable has on each of these primal dependent variables.  The prices for the 

                                                                                                                                                    

assumptions have not been verified.  The issue can be avoided by assuming that reactive power 
prices are zero at all PV nodes. 

51 Strictly, these prices do not need be defined at the same node. 
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primal dependent variables are free to vary as required to meet the bounds placed directly 
on them, or indirectly on them via the bounds on the independent primal variable prices.  
Thus the situation is, as we might expect, exactly dual to that in the primal problem. 

 The independent variables for the dual problem are the prices for the dependent 
variables in the primal problem. 

 The dependent variables for the dual problem are the prices for the independent 
variables in the primal problem. 

Equations (4.64) to (4.66), which describe the bounds for all the prices, reveal a 
further symmetry between the primal and dual problem.  If a primal variable is not 
constrained by either of its bounds at optimality, then the dual price associated with its 
value will be constrained by the fixed, pre-determined marginal costs associated with that 
primal variable.  Indeed, in the absence of cost discontinuities, the price would be 
constrained to equal a fixed value.  Conversely, if the dual price is free to vary outside the 
range of the marginal costs then one of the multipliers on the primal variable's bounds must 
be active, implying that the primal variable must be constrained.  In the absence of 
discontinuous costs we could therefore conclude that if a primal variable is constrained 
then its dual price is unconstrained and vice versa.  Cost discontinuities allow prices to 
take any value between the costs of decreasing and increasing the primal variable.  While 
this may appear to prevent the generalisation of this symmetry it must be remembered that 
we can divide the range of the primal variable into piece-wise linear sections, each with a 
fixed marginal cost, producing a problem for which the general result will hold.  The 
relationships between the primal and dual problem are summarised by Table 4.1. 

Dispatch Problem: 
Variables 

Pricing Problem: 
Prices associated with dispatch 

problem variables. 
Independent� Constrained 

(or not 
optimised)� 

Dependent� Unconstrained� 

Independent� Unconstrained 
(and optimised) 
 

Dependent Constrained 

Dependent� Constrained� Independent� Unconstrained� 
Dependent� Unconstrained� Independent� Constrained� 

Table 4.1: Relationships between Primal and Dual Variables. 
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To illustrate how Table 4.1 should be interpreted, consider the case of an 
independent primal variable, optimised by the dispatcher, which has a capacity limit 
imposed upon it.  If at its observed value the variable is unconstrained (i.e., not up against 
its capacity limit) then the price associated with that variable must equal the marginal cost 
of that variables usage52, and hence the price is constrained.  However, the price is 
functionally dependent on other prices, reflecting the impact of changes in the dispatch 
variable on other constraints in the network.  By contrast, if the capacity constraint on the 
primal variable is binding, then the price for that variable comprises the (constant) 
marginal cost plus the capacity rent.  While this is also a dependent dual variable, it is no 
longer constrained in value, the capacity rent taking whatever value is required to maintain 
consistency with the constrained prices.  This implies that an independent primal variable 
which has not been optimised could be treated as being constrained at its observed 
solution, the unconstrained shadow price for this constraint providing the pricing model 
with a mechanism to explain the observed value of the primal variable. 

4.4.5. The Impact on Prices of the Scope of the Dispatch 

While Table 4.1 classifies the primal OPF problem variables as being either 
constrained or unconstrained, these classifications depend upon the time frame under 
consideration.  In fact, in the extreme short run all OPF variables can be though of as fixed 
in value, with the corresponding prices being free to take values which minimise the 
pricing objective function.  At the other extreme, in the very long run, all dispatch 
variables are essentially unconstrained, and their prices are consequently set to equal some 
form of "long run marginal cost".  In other words, the scope of the pricing regime is 
fundamentally related to the scope of the dispatch optimisation.  This observation has a 
significant impact on how we explain a dispatch, and is the justification for our claim in 
the previous chapter that criticisms of the snapshot pricing approach may be mis-directed. 

The snapshot model assumed here only accounts for constraints which can be 
expressed in terms of the variables for that dispatch period, and represents variables which 
would be unconstrained in a more dynamic representation as being fixed, implying that the 
associated prices are unconstrained.  For instance, a generating unit may be operated below 
its full capacity so that it can react to support the frequency as load fluctuates.  For a 
snapshot view, the only way to explain the actual level at that instant would be to conclude 
that its generation level has been externally fixed at the observed level, and the price 
associated with this "constraint" would thus take whatever value is required to ensure that 
                                                 

52 Ignoring the issue of discontinuities. 
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a set of economically consistent prices can be determined.  But the loading of this 
generating unit may be optimal and unbounded in the broader view, and may be explained 
by a price for "frequency keeping" in that context. 

4.4.6. The Prices Actually Charged To The Market 

With prices being determined for both independent and dependent primal variables, 
and for constraints within the model, a further issue arises as to what commodities are 
actually being bought and sold in the market.  Strictly speaking, the optimisation assumes 
that the dispatcher controls all of the optimisable variables, buying them in at the costs 
specified by the dispatch problem objective function, and setting them so as to minimise 
the cost of satisfying the capacity constraints.  It therefore seems appropriate to charge (or 
pay) market participants according to the capacity constraints which are set.  For example, 
the owners of an unconstrained partially loaded generating unit will receive no payment 
for its capacity, as it is not fully used, and will only be compensated for its fuel costs 
(priced at marginal cost).  The owners of a fully loaded generating unit will receive an 
additional payment to reward them for making its capacity available.  In practice these 
prices can be combined to form a single "energy price" applicable to both generation and 
load at that node.   

A similar situation occurs with resources made available to the dispatcher by the grid 
owner.  If, as in New Zealand, the grid owner also dispatches the system, then these prices 
appear as "internal" transfer prices.  The total rents received by the dispatcher equal the 
difference between the total payment made by consumers and the total payment made to 
generating companies.  These rents reflect the marginal costs incurred due to losses, 
voltage and reactive power constraints, and any general constraints which relate to 
resources under the control of the grid owner (e.g. transmission capacity).  As discussed 
above, the arbitrary objective function of (4.15) can be used to control these rents. 

4.4.7. Impact of Binding General Constraints 

If a general constraint involving a new dependent variable is introduced in to this 
problem then analogous results arise provided that the general constraint is a function of 
nodal net power injections.  The results of Table 4.1 may be obscured, though, in those 
situations in which a general constraint, being a function of more than one independent 
variable, becomes binding.  The effect of such a constraint is to make one of the 
independent primal variables into a dependent variable, the general constraint defining its 
dependence on the remaining independent variables.  Consequently, we can use the dual 
equation corresponding to that variable to substitute for the general constraint multiplier.  
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In this way the price for this new dependent variable appears with the other dependent 
variables on the left of (4.61) to (4.63).  

4.5. The Pricing Model Developed for New Zealand 

Trans Power (NZ) Limited have developed a pricing model based on the approach 
described here (Read, 1992, Read and Ring, 1995b).  Here we report on some of the 
features of that implementation53. 

In New Zealand, most generating units which are generating active power are 
simultaneously able to provide (positive or negative) reactive power over a fairly wide 
range without incurring any additional costs.  The reactive power price must therefore be 
zero at such nodes, if the dispatcher is assumed to have optimised reactive power dispatch, 
and unless the reactive injection is hard up against a constraint.  Thus the New Zealand 
models assumes that reactive power prices at PVS nodes, i.e. all independent reactive 
power prices, are zero, dropping the corresponding terms out of the expression for 
dependent prices.  Where a reactive constraint is binding at a PV node, it is treated as a PQ 
node with a voltage constraint, as in Hogan's model.  Reactive power prices at PQ nodes, 
including all non-generator nodes, are unconstrained, since net reactive power injections 
(loads) there are assumed to have been set externally to the OPF, and not optimised by the 
dispatcher. 

Similarly, voltages at generator nodes are not strictly optimised within the half-
hourly time frame, but set according to "voltage profiles" established from experience and 
off-line studies.  To account for this it is currently assumed that all voltage magnitudes are 
set externally at PVS nodes, allowing the model to determine prices for those as necessary.  
If this were not done, and it was instead assumed that voltage had been optimised, then the 
requirement that prices for voltage at these nodes be zero would almost certainly preclude 
any possibility of determining a feasible set of prices.  At PQ nodes, where voltage 
magnitude is a dependent variable, the voltage price must be zero if voltage is not 
constrained, and this is modelled by dropping the relevant terms from all pricing equations. 

The objective function used for the pricing model minimises the rents collected by 
the transmission network, though as noted above, this is ultimately an arbitrary choice. 

                                                 

53 A recent and updated version of the implemented model described in this section has the ability to 
relax most of the simplifying assumptions we describe here.  At the time of writing, the 
performance of this new model has yet to be tested. 
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4.6. Conclusions 

In this chapter we have presented an ex post approach for determining Dispatch 
Based Prices for an AC power system dispatch.  While based on the approach of Hogan 
(1991) and Hogan et al. (1995) we consider a more general "PVQ" representation of the 
electrical relationships between the primal and dual dispatch variables, a step which 
produces different, and more general, pricing relationships than the "PQ" representation of 
the earlier works.   

Following Hogan we form the dual from the linearisation about an observed OPF 
solution.  Making the assumption that the observed solution is optimal allows us to 
disregard the "natural" dual objective function in favour of any arbitrary objective 
function, provided that the complementary slackness conditions are imposed directly on to 
the dual constraints by removing all terms relating to non-binding primal constraints.  We 
note, though, that some sub-optimally dispatched resources can be treated as if they are at 
their optimal levels by modelling them as being constrained.  We consider this to be a 
practical approach for addressing sub-optimality in ancillary services not actually traded in 
the market. 

We have analysed the economic interpretation of the prices produced by our model 
and have shown that they provide incentives consistent with efficient market operation, at 
least to a "first order" approximation. 

In the previous chapter we argued that it was important to carefully define the scope 
of the responsibilities of the dispatcher.  In this chapter we have reinforced that argument 
by showing mathematically that: 

•  prices reflect the capacity availability, and hence the owners of capacity must be 
clearly identified, 

•  whether a primal variable is considered to be constrained, and hence whether a price 
must be activated in the dual, depends on the dispatch time frame under 
consideration and, by implication, the degree of foresight attributed to the dispatcher, 
and 

•  whether or not a primal variable can reasonably be considered to be optimised or not 
depends on whether or not it is considered to be "owned" by the dispatcher. 

We have briefly discussed the implementation of the type of model we propose in the 
New Zealand context, and have illustrated how some of the ideas we describe translate into 
practice. 
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Chapter 5 

Transmission Constraints54 

5.1. Introduction 

One of the most significant, and most studied, constraints on power system dispatch 
are transmission constraints.  Schweppe et al. (1988) and Hogan (1991, 1992) have 
explored the basic economic impact of transmission constraints.  In this chapter, however, 
we explore some of the effects arising from more complex situations.  In particular, the 
theory on pricing in transmission systems has often been presented in the terms of acyclic 
transmission lines, i.e. a single transmission line with a distinct starting point and ending 
point.  For acyclic lines subject to transmission constraints conventional theory suggests a 
simple economic interpretation, namely that the binding constraint prevents a single 
marginal generating unit supplying extra power to the regions on the opposite side of the 
constraint from it, and hence there must be another marginal generating unit on that other 
side.  The node with the most expensive marginal generating unit attached will have a 
price not less, and typically much greater, than that which would occur if it were possible 
to send power from the cheaper marginal generating unit.  Consequently the transmission 
constraint raises the cost of operating the system and the marginal impact of this is 
reflected by an increase in price across the constraint. 

The equivalent situation for cyclic transmission lines, i.e. lines which form a loop, is 
not so easily explained.  While we should still expect a price rise across the constraint we 
must take account of the fact that the "far" side of the constraint is connected with the 
"near" side by two paths, one directly constrained, the other not55.  To price in this 
situation we must introduce the "spring washer" effect. 

                                                 

54 This chapter is based on Read and Ring  (1995b) and Read and Ring (1995c). 

55 Though as we show the binding constraint implicitly effects both paths. 
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5.2. Pricing Equations for Transmission Constraints 

5.2.1. The Primal Constraints 

Transmission line flows, and the constraints on those flows, can be represented with 
the general constraint of Chapter 4.  Flows can be defined in terms of the independent 
variables as shown in (5.1) and (5.2). 

 ( ) k
PVSPQ

D
PQ
G

PX
D

PX
G

A
k PP +−−− V,QQ,PP  = 0 :ηPk  ∀ ∈k K  (5.1) 

 ( ) k
PVSPQ

D
PQ
G

PX
D

PX
G

A
k QQ +−−− V,QQ,PP  = 0 :ηQ k  ∀ ∈k K  (5.2) 

Here Pk  and Qk  are, respectively, the active and reactive power line flows on transmission 

line k , where K  describes the set of transmission lines.  The shadow prices for these 
constraints are ηPk  and ηQk

, respectively, and both of these are unconstrained in sign.  The 

bounds on the line flows can be defined in many ways, though we consider two.  The first 
type are simple minimum and maximum megawatt flow limits applied separately to active 
and reactive power.  These are shown in (5.3) to (5.6) with the dual multipliers, which are 
all non-negative, shown on the right. 

 − ≥Pk  −Pk
max  :υPk

+  ∀ ∈k K  (5.3) 

 Pk ≥ Pk
min :υPk

−  ∀ ∈k K  (5.4) 

 − ≥Qk  −Qk
max  :υQ k

+  ∀ ∈k K  (5.5) 

 Qk ≥  Qk
min  :υQk

−  ∀ ∈k K  (5.6) 

Note that an upper bound on flow means an upper bound in the conventional 
direction for that line56.  An upper bound on flow in the reverse direction is represented by 
a (negative) lower bound on flow in the conventional direction.  Genuine lower bounds on 
the magnitude of line flows, in each direction, can be represented by positive lower 
bounds, or negative upper bounds, respectively. 

A more physically accurate constraint would be one which jointly constrains active 
and reactive power flows by limiting the total power flow magnitude, and hence the total 
heating, on a line.  This "thermal" constraint is represented by (5.7) (which is in canonical 

                                                 

56 That is from node ( )ki  to node ( )kj . 
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form) where Tk
max  is the square of the maximum power magnitude allowed to flow on line 

k  and χ k  , the shadow price, is non-negative57. 

 − − ≥P Qk k
2 2  −Tk

max  :χ k  ∀ ∈k K  (5.7) 

This constraint corresponds to requiring that the total MVA (active and reactive) flow on 
the line must be less than some critical level, Tk

max , which may be thought of as the square 

of the maximum possible complex flow58. 

In practice either a thermal limit or a flow limit would be applied to a single line. 

5.2.2. The Dual Pricing Relationships 

The general model of (4.15) to (4.24) is shown, with transmission constraints 
replacing general constraints, in (5.8) to (5.17).  The development of this result is 
summarised as follows: 

•  Equation (5.1) to (5.7) are re-arranged into the form of the general primal constraint  
(4.6), with all terms on the left, and with slack variables inserted to produce an 
equality constraint59.  So, for example, (5.7) is re-arranged as: 

 ( ) 0=slack22 ++−−= max
kkkkk

A
k TQPQPH ,   

•  These constraints are substituted into (4.15) to (4.24).  For ease of discussion, both 
types of flow constraints are assumed to exist for each line, though only one flow 
constraint can be binding. 

•  Transmission line derivatives with respect to generation and demand are identical, 
though with opposite sign, hence these derivatives cancel from the price bound 
constraints, while the derivatives with respect to demand in the equations for the 
dependent prices can be described as being with respect to net power injections (with 
a sign change).  The form of (4.24) reduces to that of (4.40), and gives rise to (5.17) 
and (5.18). 

                                                 

57 This type of constraint is discussed by Hogan (1991), Murphy, Kaye, and Wu (1994), and Read and 
Ring (1995b). 

58 Alternatively, this constraint could be scaled so as to represent losses on the left, and a loss limit on 
the right. 

59 These slack variables have no impact on the dual problem given that we assume that the binding 
primal constraints are specified by the observed dispatch. 
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 µQi =  β λQi Q−   ∀ ∈i PV  (5.12) 
 µVi =  βVi    ∀ ∈i PQ  (5.13) 

 cPi Pi
− −− υ ≤  βPi ≤ cPi Pi

+ ++ υ    ∀ ∈i PXS  (5.14) 
 cQi Qi

− −− υ ≤  βQi ≤ cQi Qi
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  η υ υ χPk Pk Pk k kP= − ++ − 2 *   ∀ ∈k K  (5.17) 

  η υ υ χQk Qk Qk k kQ= − ++ − 2 *   ∀ ∈k K  (5.18) 



Chapter 5: Transmission Constraints 75 

 

Equations (5.17) and (5.18) are the dual constraints corresponding to the capacity 
charges on the  primal line flows, Pk  and Qk .  We investigate the implications of these to 
each of the two forms of transmission constraint separately.  If we have only flow limit 
constraints these equations become: 

 η υ υPk Pk Pk= −+ −  ∀ ∈k K  (5.19) 

 η υ υQk Qk Qk= −+ −  ∀ ∈k K  (5.20) 

That is, the value associated with the flow on a line is defined by the dual variables 
corresponding to the upper and lower bounds on the flow.  Complementary slackness 
requires that if a primal constraint is not binding then the corresponding dual variable is 
zero.  Thus, for active power, υPk

+  and υPk
−  can not both be non-zero.  If active power flow 

is not at its upper bound then υPk
+ = 0 , and if it is also not at its lower bound then υPk

− = 0  
and hence, ηPk = 0 .  That is, if the flow on a line is not constrained by a bound, then there 

is no value in having any more line capacity.  However, if the line flow is at an upper 
bound (from node i to j, i.e. in the conventional direction specified for the line) then 
υPk

+ ≥ 0, indicating that, given one more unit of line capacity in that direction, we should be 
able to reduce the cost of running the system60, and hence η υPk Pk= ≥+ 0 , indicating the 

maximum amount we would be prepared to pay to have one more unit of line flow.   

In reaching this conclusion it must be remembered that the upper bound on active 
power line flows, equation (5.3), is in canonical form61, with the negative of the line 
capacity on the right, and since υPk

+  equals the change in the cost of running the system 
resulting from an increase in the right hand side, υPk

+  actually measures the marginal value 

of decreased line capacity.  Hence a decrease in the line capacity increases the system 
operating cost (η υPk Pk= ≥+ 0 ) so increased line capacity must decrease the cost of 
operating the system.  Therefore, ηPk  indicates the value of having one more unit of line 

capacity. 

Similarly, if flow is at a lower bound in that direction, then η υPk Pk= − ≤− 0, which 

indicates that if the lower bound were raised by one unit in that direction then the cost of 

                                                 

60 Note that these multipliers multiply derivatives with respect to power injection.  These terms are 
then subtracted from the expression for the price for power extracted from the network. 

61 And remains in canonical form when substituted for the general primal constraint. 
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running the system would increase, and we would have to be paid before we would want to 
reduce the line flow62.  Identical conclusions apply for reactive power line flows. 

If we have only thermal limit constraints then (5.17) and (5.18) reduce to: 

 η χPk k kP= 2 *  ∀ ∈k K  (5.21) 

 η χQk k kQ= 2 *  ∀ ∈k K  (5.22) 

If, at optimality, a thermal limit constraint is not binding then η η χPk Qk k= = = 0 , as 

there is no value in having any more thermal capacity because there is no use for it.  
However, if the thermal limit becomes binding then χ k > 0 and η χPk k kP= >2 0*  

(assuming positive active power line flow in the conventional direction), indicating that a 
unit increase in our ability to send active power through the line, in that direction, would 
reduce the cost of operating the system, and hence we would be prepared to pay up to a 
positive amount, ηPk , for that unit.  Similarly, if we could send one more unit of reactive 

power flow through the line, the value of that extra unit would be η χQk k kQ= >2 0*  (again 

assuming positive line flows).  If the flow is at a maximum in the reverse direction then the 
signs of the capacity prices are reversed, but the interpretation is consistent. 

It is worth noting that while the transmission flow constraints stated here encompass 
four possibilities (upper or lower bounds in each direction), it is not necessary for the user 
of such a model to specify which is intended.  Recall that each line has a specified 
"conventional direction" of flow, and that we model "reverse" flows as negative flows in 
the conventional direction.  If a constraint is binding it must impose a cost on the system 
by impeding flow from a lower priced region to a higher priced one.  In principle, we could 
imagine solving the model to produce an unconstrained "loss differential" solution63, 
deducing the type of constraint required, then re-solving the model with the constraint 
imposed.  In practice, only one of an upper/lower constraint pair can have a positive 
multiplier in any one dispatch.  (This condition still holds if both upper and lower bound 
constraints are set to the same level, and hence are both "binding", as only one of the 
constraints will have a positive multiplier associated with it). 

Although such a model must interpret the constraint in absolute terms, the actual 
observed line flow (from the load flow solution) is known, and thus the model can 

                                                 

62 If the lower bound is really an upper bound in the reverse direction, these terms will have opposite 
signs and hence raising the bound corresponds to restricting the flow in that direction. 

63 With prices defined relative to only one marginal node while ignoring the price bounds imposed by 
other marginal nodes. 
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automatically determine whether a constraint was in the forward or reverse direction.  Thus 
both multipliers can safely be activated in a model, leaving the model to determine which 
is required to explain the price discrepancy observed in the dispatch64. 

5.3. The Impact on Prices of Transmission Constraints 

5.3.1. Introduction 

In this section we describe some of the results arising from experimentation with 
Trans Power's AC pricing model, and present an economic analysis of those results.  While 
it has long been recognised that the impact of transmission constraints is to raise the price 
of power at the receiving end of a transmission line while lowering it at the sending end, 
little work has been reported on the impact of such constraints in more complex system of 
lines, particular cyclic systems.  The work we present goes some way towards rectifying 
this situation. 

It should be noted that Wu et al. (1994) and Oren et al. (1995) report a number of 
interesting pricing phenomenon, including a phenomenon similar to the "spring washer" 
effect discussed below, resulting from binding constraints in cyclic transmission lines.  
However, their results are based on the assumption that the complementary slackness 
conditions applying to the constraints on transmission line flow can be ignored.  This 
assumption is introduced because Wu et al. assume that the transmission system is not a 
"profit-maximising, competitively organised goods-transporting sector"65.  A consequence 
of this assumption is that their is no longer a constraint imposing consistency in nodal 
prices, and hence their results are not surprising.  We make no such assumption in this 
work, with an optimal, cost minimising dispatch assumed, an assumption stemming from 
the centralised pool dispatch process that we consider.  In fact, the results of Wu et al. 
would, in our interpretation, correspond to a sub-optimal dispatch.  

                                                 

64 Strictly this logic only applies with the original dual objective function, and since including both 
multipliers violates complementary slackness, the correct choice can not be guaranteed with a 
revised objective function.  More complex logic could be devised to overcome this problem, but it is 
certainly irrelevant in the situation where constraints are only introduced as required to explain price 
discrepancies.  In that case prices can definitely only move in one direction, and only the correct 
multiplier can achieve this. 

65 Wu et al. attempt to refute the results of Hogan (1991, 1992) on the (incorrect) premise that it treats 
electricity networks as if they behave like transportation networks. 
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5.3.2. Prices Observed in New Zealand With Transmission Constraints 

Figure 5.1 depicts a sub-section of the North Island transmission grid.  A loop 
comprising a 220kV system is shown, as well as an acyclic 110kV system running up the 
east coast of the North Island.  Using a sample dispatch for the full North Island system, 
Trans Power's AC ex post pricing model was solved in the absence of transmission 
constraints, as discussed by Drayton, Read, Ring and Rosevear (1993).  The resulting "loss 
differential" solution explains all price variations in terms of marginal losses.  As there 
were no constraints, only one generating station, Huntly, was marginal having a price set at 
$30/MW.  To simulate the impact of a (simple active power flow limit) transmission 
constraint, the pricing model was re-solved for the same dispatch, but with the price set to 
a new, non-optimal value at a node other than Huntly, effectively indicating to the model 
that this is a second marginal node.  The transmission constraint multipliers on one of the 
transmission lines were activated so as to allow the model a way of explaining this 
apparent out-of-merit-order dispatch (the marginal transmission flow could be in either 
direction).  The resulting nodal prices were recorded for each of a range of price settings at 
the second "marginal" node. 
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Figure 5.1: A sample of the North Island transmission system 

The optimal, loss differential price at Tuai, a node on the 110kV acyclic line, was 
$28.5/MW.  A constraint on the line joining Fernhill and Tuai was simulated by setting the 
price at Tuai to values ranging between $0/MW and $50/MW and activating the constraint 
multiplier for the Fernhill-Tuai line.  The resulting prices along the acyclic stretch of line 
are shown in Figure 5.2. 
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Figure 5.2: Active power prices along an acyclic line in North Island 

Figure 5.2 demonstrates the generally reported impact of transmission constraints, 
that is, that prices fall at the sending end, and rise at the receiving end, of a constrained 
transmission line66.  The loss differential solution is indicated by the bold line. 

A more interesting situation arises when a constraint is activated within the 220kV loop.  
The optimal, loss differential price at Tokaanu was $28.3/MW.  In a second experiment, 
the transmission constraint multipliers on the link joining Tokaanu to Whakamaru were 
activated, with the price at Tokaanu being varied from its optimal value down to $0/MW67, 
this out-of-merit-order dispatch helping to relieve this constraint, thus making Tokaanu a 
second marginal node.  Trans Power's pricing model determined the new prices for the full 
North Island network, the effect of the constraint on the active power prices around the 
loop being shown in Figure 5.3.  The unconstrained loss differential prices are shown by 

                                                 

66 The marginal flow is from Tuai to Fernhill when the price at Tuai is low, and from Fernhill to Tuai 
when it is high. 

67 Price increases at Tokaanu are not considered as the pricing model would be unable to determine 
prices in this situation.  This is because an increase in price at Tokaanu would imply that a marginal 
unit of power should flow from Huntly towards Tokaanu and this would only worsen the condition 
of the constrained line.  Hence such a dispatch could not be optimal and there is no consistent set of 
prices that could explain such a dispatch. 
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the bold line.  As the Tokaanu price is lowered, other prices are affected, and either pushed 
higher or lower than their loss differential price.  The same result does not apply, however, 
for reactive power (the constraint is a simple flow limit which is independent of reactive 
power), as shown by Figure 5.468.  

 
Figure 5.3: Active power prices around a cyclic loop in North Island 

                                                 

68 We have arbitrarily superimposed a constraint on an optimal unconstrained dispatch, hence the 
results depicted in Figure 5.4 assume the same reactive power injections as for the unconstrained 
dispatch.  In practice, however, reactive power injections should be re-optimised so as to take 
account of this constraint  Consequently, the prices shown in Figure 5.4. are significantly higher 
(possibly by several orders of magnitude) than would be the case had reactive power injections been 
optimised with the transmission constraint imposed.  Kahn and Baldick (1994) use similar examples 
to highlight the importance of ensuring that the dispatch upon which prices are based is in fact 
optimal. 
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Figure 5.4: Reactive power prices around a cyclic loop in North Island 

It is apparent from Figure 5.3 that the price of power rises around the network as we 
move from the Tokaanu side of the constraint around towards Huntly and on to 
Whakamaru.  This implies a significant drop in price as we continue across the constrained 
line from Whakamaru back to Tokaanu.  We refer to this phenomenon as the "spring 
washer" effect.  For acyclic lines prices at nodes receiving power through a constraint only 
ever rise compared with unconstrained loss differential prices.  This spring washer effect 
demonstrates that in constrained acyclic loops prices can either rise or fall compared to 
their loss differential values.  

5.3.3. Analysis of the Spring Washer Effect 

To explain the spring washer effect we must first explore the behaviour of 
transmission prices about an unconstrained cyclic transmission loop.  Figure 5.5 depicts a 
simple transmission loop with power flowing in one side and out the other side. 
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Figure 5.5: The "Spring Washer Effect" 

The marginal source of power is at node m.  There could either be a partially loaded 
generating unit at this node or a transmission line which connects node m with a partially 
loaded generating unit outside of the loop.  Current entering the loop has a choice of two 
paths to take around the loop and so splits itself between the paths, as required by 
Kirchhoff's Laws of current and voltage, so as to follow the path of least impedance.  If we 
assume that power flows on each path are both related to their currents by the same 
constant69, and since current is inversely proportional to impedance, the ratio of the power 
flows travelling each path must conform to the relationship (Read and Ring, 1995c): 

 







=








1path on  impedance
2path on  impedance

2path on  flowpower 
1path on  flowpower   (5.23) 

For the unconstrained problem the relative prices around the loop only depend on 
losses.  The prices, indicated by the closed line, rise across the loop to reflect the losses 
incurred in getting power from the less expensive source on the left side of the loop to the 
more expensive right side of the loop.  As more power is required on the right side of the 
loop, more power is injected at the marginal node with the flows of that power dividing 
according to the equation above.  

                                                 

69 This is only really true if the only two voltages on the loop are at the points where flows enter and 
exit the loop, or if the voltage profile around the loop is consistent with there being only two 
voltages set. 
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Imposing a transmission constraint on the loop immediately implies that flow cannot 
be increased across the constraint, and that it is impossible for one marginal generating 
unit (or generating station) alone to provide extra power without increasing the flow on the 
constrained line.  Thus one new marginal generating unit is required.  The solid line in 
Figure 5.5 depicts the situation which is now encountered.  The changes can be 
summarised as follow: 

•  The price jumps at the constrained point, simultaneously falling on the upstream side 
and rising on the downstream side. 

•  The price remains constant at the point where power injected from the current 
marginal node (m) enters the loop. 

•  Somewhere around the loop, or connected to the loop, a new marginal node appears. 

•  If it is connected between the current marginal node and the upstream side of the 
constraint, the new marginal node will have to back off its net injection into the loop 
so as to relieve pressure on the upstream side of the constraint. 

•  If it is connected between the current marginal node and the downstream side of the 
constraint, the new marginal node could will now have to inject more power into the 
loop to relieve pressure on the constraint by increasing flow to its downstream side, 
and so backing off flow across it. 

•  The price at the point where power injected from the new marginal node enters the 
loop must reflect its marginal cost. 

•  From the original marginal node, where the price remains constant, the price rises 
smoothly around the loop, to the downstream side of the constraint, and falls in the 
other direction, to the upstream side of the constraint, where it can even become 
negative70. 

The pricing resulted depicted in Figure 5.5 assumes that power flows in at one point 
in the loop and out at another, without any other in-takes or off-takes.  Consequently, 
losses rise continuously from the injection point around to the off-take point, giving rise to 
the smoothness of the price curves in Figure 5.5.  In practice, however, there may be other 
points at which power enters or leaves the loop, with power flows travelling in different 

                                                 

70 This reflects a situation in which the dispatcher would be prepared to pay for increased load as the 
best way to relieve pressure on a link, a situation which is not physically impossible. 
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directions on different segments of the loop.  As a consequence the smooth price profile 
may be replaced by an undulating profile, with the effect on prices of losses and the 
transmission constraint reinforcing one-an-other at some points, while countering each 
other at other points.  However, regardless of where injections occur, the impact on the 
loop prices due to the transmission constraint will be reflected throughout the network, 
depending on where each branch is ultimately connected into the loop.  Where branches 
are connected in such a way as to form parallel loops, prices will rise around those parallel 
loops in a similar manner. 

A derivation of prices around a transmission loop, assuming a simple DC load flow, 
is presented by Read and Ring (1995c).  Read and Ring consider a loop like that in Figure 
5.6, with nodal power injections indicated by Pi  and resistances (the DC form of 
impedance) between  nodes i and j defined by Rij .  The "observed" solution was defined to 

be one with all voltages being identical (i.e. there were no flows), with prices being 
derived by perturbing the nodal voltages individually. 

1P

3P

2P

Constraint.
Thermal

Marginal

P0

12R

23R

30R

01R

Marginal

1bPaP 1 2aP bP 2

 
Figure 5.6: A constrained transmission loop with nodal  

"position" defined by cumulative resistance. 

This diagram represents a DC approximation where: 

•  Line resistance between nodes i and j is indicated by Rij  while the nodal net injection 
at node i is indicated by Pi . 

•  The line connecting nodes 0 and 3 is subject to a thermal constraint.  This constraint 
effectively places a limit on the current that can flow through the line. 

•  When the thermal constraint is not binding the generating unit at node 2 is the only 
marginal source of power.  When the constraint becomes binding a second marginal 
generating unit is required, this is taken to be the generating unit at node 1. 
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•  For simplicity, we ignore losses, so the flows out of the injection nodes equal the 
flows into the consumption nodes. 

The resulting power price at some point X is: 
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Here RX  measures the "electrical distance" (i.e. the resistance) between the point X  and 
the point electrically half way between the marginal generators, i.e. at an electrical distance 
of R12 2 from each71.  RX  has a negative value at node 0, and a positive value at node 3.  
Table 5.1 illustrates the application of (5.24) to the nodes in Figure 5.6.  Whether the 
prices increase or decrease from one side of the constraint to the other depends solely on 
the sign of the difference between the prices at the two marginal nodes. 
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Table 5.1: Prices around a constrained cyclic loop. 

The constraint shadow price is given by the equation: 
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Here RT  is the total resistance around the loop, that is: 

                                                 

71 It is not strictly necessary to use the midway point" as a reference and the formula can be simplified 
if we use one of the marginal nodes instead.  However, the choice of reference is arbitrary, and the 
form used here highlights the symmetry of the relationship. 
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 R R R R RT = + + +01 12 23 30   (5.26) 

The following observations can be made about these results: 

•  The extent of the spring washer price effect is ultimately proportional to: 

- the difference between the marginal costs at the two marginal nodes, 

- the electrical "distance" around the loop (i.e. total loop impedance), 
and 

- the inverse of the electrical "distance" between the two marginal 
nodes via the unconstrained path72. 

•  If, for example, β β2 1>  (and none of the line resistances are zero) it is apparent that 
β β β β3 2 1 0> > > .   

•  The absolute position of the marginal nodes on the loop, relative to the constraint, do 
not influence the value of ηP 30  if the electrical distance (R12 ) between them is fixed.  

The prices will change around the loop, however. 

•  If the marginal nodes lie outside the loop, these same formulae can be applied to the 
points at which their output enters the loop73.  Naturally, costs are adjusted for losses 
from the point of generation to the point of entry to the loop. 

•  ηP30  is not the price differential across the constraint.  Instead it corresponds to the 

price jump which would occur if we were to imagine the constraint as occurring at 
some point within the constrained line.  We can imagine the price equation as 
applying at all points along the constrained line, continuing to rise from the 
downstream side, and fall from the upstream side, until the price jump occurs at the 
hypothetical constrained point74.  This situation is shown in Figure 5.7. 

                                                 

72 Thus it is proportional to the ratio of the resistance between the marginal generators to the total loop 
resistance.  This corresponds to the engineering concept of "leverage".  This relates to the 
effectiveness of dispatching the generators in a manner so as to keep flows across the constraint 
constant.  If the two marginal generators are electrically close to each other, quite large adjustments 
will have to be made in order to control the distant flow.  This makes it difficult, and expensive, to 
achieve control, and produces correspondingly large, positive and negative, price shifts in our 
model. 

73 Multiple loops are discussed below. 

74 Read and Ring (1995c) give a derivation but the result should be obvious from the fact that, by 
introducing notional nodes, we can make the "constrained line" appear either longer, or shorter, 
without affecting the real situation.  As the line(s) which are deemed to be constrained extends 
(contracts) to include more (less) of the loop, the differential across the line falls (rises), according 
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Multiplier

Upstream Side

Downstream Side

 Constrained Line

Position  
Figure 5.7: The constraint shadow price versus the price jump. 

•  As a result of these loop effects, active power prices can fall in the direction of active 
power flow. 

•  Prices for points on the upstream side of the loop, between the upstream side of the 
constraint and the cheaper marginal node, will be lower than the marginal cost of 
power at either marginal node. 

•  Prices for points on the downstream side of the loop, between the downstream side 
of the constraint and the more expensive marginal node, will be higher than the 
marginal cost of power at either marginal node. 

•  Prices can even become negative on the upstream side at the constraint, implying 
that we should be prepared to pay generators to reduce output, or consumers to 
increase load, if that is the best way to reduce pressure on the constrained line. 

•  Prices for points between the two marginal nodes, on the unconstrained side of the 
loop will lie between the prices at the marginal nodes. 

                                                                                                                                                    

to the formula, with the highest differential, ηP30  , applying to a line of infinitesimal length, 
including the constraint. 
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•  Congestion rentals apply between all points in the constrained loop75, and these may 
be positive or negative depending on the influence which the indirect "loop flows"76 
occasioned by such transfers have on the constrained line. 

•  Any transfer between points outside the loop, but which must pass through the loop, 
will incur positive or negative congestion rentals depending on its point of entry and 
exit. 

5.3.4. A Numerical Example of the Spring Washer Effect 

Figure 5.8 depicts a greatly simplified representation of the central North Island 
loop.  We assume that the only impedance is line resistance (represented here, very 
approximately, in relative terms).  This dispatch is unconstrained, but the line joining 
Bunnythorpe to Huntly has just reached its maximum flow level77.  Huntly is generating at 
full capacity but requires an additional 100MW from the south to meet the load in the 
north.  Bunnythorpe, receiving power from the South Island, is marginal with a price of 
$10/MW.  Ignoring losses, this price holds throughout the North Island network.  The 
power injected at Bunnythorpe splits between the two available paths, with 50MW going 
each way, as dictated by the line resistances.  Stratford is not generating because its 
marginal cost of $20/MW exceeds the price there for this unconstrained dispatch.  

                                                 

75 Although there is only a shadow price on the constrained line itself. 

76 If power flows through one circuit then the physical laws of current flow will require that power 
flows along attached parallel circuits.  These parallel flows are "loop flows". 

77 We here assume that there is no demand for increased line flow, so the fact that the line flow is at its 
upper limit does not actually constrain the dispatch. 
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Figure 5.8: An unconstrained three node network. 

The line joining Bunnythorpe to Huntly now becomes constrained.  We want to 
determine the new prices at Huntly (which is not marginal) and the value of extra capacity 
on the constrained line.  To get more power to Huntly the generating station at Stratford 
must play a role, and hence both Stratford and Bunnythorpe must be marginal nodes.  The 
fact that power is flowing through a constrained loop, towards Huntly immediately 
indicates that Huntly must have a price higher than at either of the other two nodes. 

In terms of Figure 5.6, Huntly corresponds to node 0, Stratford to node 1, and Bunnythorpe 
to node 2.  Nodes 2 and 3 are at the same point in space as there is no line between them.  
Hence we have: 

 βP1 20= $ /MW (Stratford)  βP2 10= $ /MW (Bunnythorpe)  

 R01 1=  (Huntly-Stratford)  R12 1=  (Stratford-Bunnythorpe) 

 R23 0=  (No line)   R30 2=  (Bunnythorpe-Huntly) 

 RT = + + =1 1 2 4  

RX  is zero at a point half way between Stratford and Bunnythorpe and decreases as we 
move towards Stratford.  Hence, at Huntly, we have: 

 511
2
1

2 01
12 .−=−−=−−= R

R
RX  

Using the spring washer effect equation we have a price at Huntly of:  
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While, the value of extra line capacity is: 
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That is, we would be prepared to pay $40 if we were to be able to send one more megawatt 
of power along the line. 

These results can be derived more intuitively, however.  Let us suppose that demand at 
Huntly has risen by 10MW.  The generating station at Huntly is fully loaded, and cannot 
meet this extra demand.  Bunnythorpe cannot supply this extra load on its own, as this will 
cause the constraint to be violated.  Hence Stratford must increase generation to supply this 
demand, with the power flows split across the two paths being determined by (5.23): 
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That is, the flow from Stratford to Huntly via Bunnythorpe is just one third of the amount 
that flows directly to Huntly.  Hence for every additional megawatt injected from Stratford 
the flow across the constrained link would be increased by 0.25MW, while the flow 
directly to Huntly would increase by three times this, or by 0.75MW. 

Because of the line constraint, Bunnythorpe must decrease its injection so as to allow the 
extra 0.25MW flow produced by each additional unit injected at Stratford to reach Huntly.  
The power flow split for Bunnythorpe is78: 

                                                 

78 Note that this is the same as the split which occurs in the diagram of the unconstrained dispatch. 
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This means that, for every megawatt by which generation is decreased at Bunnythorpe, 
there is a 0.5MW decrease in flow to Huntly via Stratford and a 0.5MW flow decrease on 
the more direct, but constrained, link. 

To meet an increase of 10MW at Huntly therefore, we must increase generation at 
Stratford by 20MW, increasing flow on the constrained line by 20×0.25=5MW, while 
decreasing the injection at Bunnythorpe by 10MW, decreasing flow on the constrained line 
by 10×0.5=5MW, and cancelling out the extra flow caused by Stratford's increase79.  The 
total change in cost, over an hour, of the extra demand at Huntly is:  

(20MW×$20/MW) - (10MW×$10MW) = $300 

That is, every actual megawatt-hour of demand north of Huntly has cost the system $30, 
hence the price at Huntly must be $30/MW80.  This solution is shown in Figure 5.9. 
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Stratford Shadow Price = $40/MW

Flow = 40MW

Flow = 60MW

Flow = 50MW

Net Demand = 110MW

Injection =90MW

Generation=20MW

Marginal Cost = $8/MW

Marginal Cost = $20/MW

(node 0)

(node 2 and 3)

(node 1)

 
Figure 5.9: A constrained three node network. 

                                                 

79 It may appear that a cheaper approach would be to increase generation at Bunnythorpe by 10MW 
while decreasing net generation (by increasing demand) at Stratford by 20MW.  While this would 
cause the change in flow on the constrained line to be zero the total change in generation would 
actually be -10MW, and hence demand would have to be reduced, rather than increased, at Huntly. 

80 Naturally, if there were a generating station north of Huntly with a price greater than $20/MW but 
less than $30/MW, it would be cheaper to use that to meet the increased demand instead of Stratford 
at $20/MW. 
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The value of capacity on the constrained line can be determined by evaluating the 
change in the cost of supplying power to Huntly if one more unit of capacity were 
available.  This change in cost must reflect the change in the value of the injection at the 
two marginal nodes.  We have already shown that every extra megawatt of power injected 
at Bunnythorpe increases the flow across the constraint by 0.5MW, while each extra 
megawatt at Stratford increases this flow by 0.25MW.  Thus if an extra unit of capacity 
were to become available we could change the marginal generation levels according to: 

 0 5 0 25 1. .∆ ∆P PBunnythorpe Stratford+ =  

But we also require that power be conserved.  Since we are ignoring losses this power 
conservation condition is just: 

 ∆ ∆P PBunnythorpe Stratford+ = 0 

The cheapest solution to these two equations is81: 

 
∆
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The resulting change in system cost is: 

 (-4MW×$20/MW) + (4MW×$10MW) = -$40 

Hence the shadow price on the constraint is $40/MW82, reflecting the fact that an extra unit 
of capacity will reduce the cost of running the system by $40.  Thus we should be prepared 
to pay $40 for an extra megawatt of line capacity in the direction of transfer.  Note that, as 
explained above, this shadow price is greater than the price difference between the two 
ends of the constrained line which, in this case, is only (30-10)=$20.  This reflects the fact 
that the expansion of the line is not solely for the benefit of those wanting to transfer 
power directly between these two nodes, but also for those whose transfers indirectly, or 
partially, utilise that link.  

Conversely, this reflects the fact that even a "direct" transfer between these two points will 
not be solely carried by the constrained line.  In fact, in this case, only half is carried by 
that line, so that the congestion rental for such transfers is only half the $40/MW shadow 
price, that is, $20/MW of additional demand at Huntly. 

                                                 

81 We could equally reverse the signs, but this would mean increasing generation at the most 
expensive generating station (Stratford), which is not economically desirable. 

82 Strictly, given that we are dealing with a cost minimisation problem, this should be -$40/MW. 
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5.4. More Complex Loop Structures 

The Spring Washer effect is the simplest case of a more general class of pricing 
phenomena, involving multiple constrained lines in a single loop, or multiple connected 
loops with one or more constrained lines.  The nature of the loop, and the number and 
positions of the constrained lines, as well as the direction of the constrained flows, all have 
implications for the number and position of the marginal nodes.  In some cases, many 
marginal nodes may need to work in unison to get power across a constrained line, while, 
in other cases, it may be physically impossible to transfer power between two regions, so 
that completely independent marginal nodes are required in each region.   

While the pricing behaviour around such intricate loops may be quite complex, 
prices will still obey the basic principles underlying the spring washer effect. So, for 
example, where branches are connected to a single constrained loop in such a way as to 
form parallel loops, prices will rise around those parallel loops in a similar manner.  

5.5. Conclusions 

In this chapter we have extended the general dispatch based pricing model of 
Chapter 4 so that it includes the impact of transmission constraints, whether they be simple 
flow constraints or thermal constraints.  The form of the dual pricing constraints are 
similar to those derived by Hogan (1991).  We have explained the basic economic impact 
of these constraints in terms of standard duality theory. 

An analysis of prices produced by Trans Power (NZ) Limited's AC pricing model 
demonstrates the standard effects, as often reported in the literature, of transmission 
constraints on acyclic transmission lines.  However, for constraints in cyclic loops it is 
shown that a more complicated "spring washer" effect occurs as a consequence of the need 
to maintain a constant power flow across the constrained line.  Two marginal nodes are 
required to react simultaneously so as to satisfy this constraint.  As these nodes will have 
different prices the prices around the network are forced to rise from the side of the 
constraint nearest the cheapest marginal node around to side nearest the most expensive 
marginal node. 

We have demonstrated that the spring washer effect is observed in reality, using 
prices observed in the central North Island of New Zealand, and have presented 
(illustrative) pricing equations, based on a DC approximation, which are consistent with 
the behaviour observed in practice.  The spring washer effect we describe is fundamentally 
different from that reported by Wu et al. (1994) as we assume an optimal primal dispatch, 
with nodal prices and transmission rentals required to be consistent. 
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Chapter 6 

Reserve Capacity Constraints83 

6.1. Introduction 

Electricity generation and transmission equipment are subject to occasional, though 
generally infrequent, failures.  These failures can lead to a disruption of supply in all or 
part of a power system.  These power disruptions place greater loads on the generating 
units which remain in operation.  In New Zealand, this greater load immediately causes the 
system frequency to drop below its nominal value of 50Hz.  Frequencies of AC power 
which are excessively low or excessively high may damage components of the power 
system and even the equipment of consumers.  Furthermore, New Zealand law defines 
clear limits as to how far the steady state system frequency can deviate from 50Hz.  
Consequently, the New Zealand system is operated under the requirement that reserve 
capacity must be available, both to prevent the system frequency dropping too low, and to 
quickly restore the frequency to near its normal level.  

In a regulated environment, or an environment with centralised decision making, it is 
relatively easy to manage the provision of reserve.  However, in a deregulated or privatised 
market, reserve provision becomes more difficult to manage.  Individual generating 
companies will tend to have small collections of plant, and will not generally be able to 
cover their own reserve needs efficiently.  Furthermore, no generating company or 
consumer will want to forego profitable and reliable participation in the energy market to 
play a reserve role unless adequately compensated.  More fundamentally, the dispatch 
based pricing approach relies on being able to determine a set of prices which is consistent 
with the observed dispatch.  If the dispatch is significantly affected by a binding reserve 
constraint, it must be accounted for in the pricing system.  In countries with small power 
systems, like New Zealand, the loss of a single generating unit could account for a 
significant proportion of total generation, making incentives for reserve availability 
crucial.  In fact, for the New Zealand system, the reserve requirement is probably the 

                                                 

83 This chapter is based on Ring, Read, and Drayton (1993a, 1993b), and Ring and Read (1994c). 
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single most important requirement, apart from the fundamental energy balance equation, in 
determining spot prices. 

The literature on reserve pricing and markets has been relatively limited.  Stadlin 
(1971) used a Lagrangien multiplier to represent the marginal impact of a generating unit's 
regulating margin, that is the amount a generating unit can ramp up by in a defined time 
interval, on system operating costs.  This relationship was developed for scheduling 
reserve rather than for operating a reserve market.  A similar idea is adopted in model of 
Caramanis et al. (1987).  This model, while providing a good economic framework, is 
rather general and does not address many of the complications encountered in reality.  
Berger and Schweppe (1989) propose the use of MIT style price signals to guide a system 
through the critical phase immediately following an outage84.  Hogan (1992) briefly 
describes simple ways of modifying ex post prices to account for transmission 
contingencies and power outages but does not explicitly model the reserve generation 
problem.  The potential for futures markets in reserve capacity is described by Ruff (1992).  

In this chapter we develop a form of reserve pricing which differs from earlier works 
in a number of respects.  We base our approach upon the current contingency planning 
rules employed in the New Zealand system, and use realistic representations of the 
behaviour of the reserve sources in that system.  This model is deterministic, as the New 
Zealand system is dispatched so as to be able to cover the single largest contingency, 
without accounting for the probability of failures occurring85.  The possibility that reserve 
may actually be called upon is ignored, on the assumption that this will only happen very 
infrequently86.  While not necessarily consistent with the idea of minimising the expected 
cost of outages, this approach reflects the importance of reserve capacity in the New 
Zealand system.  A discussion of the stochastic aspects of this problem is presented in 
Chapter 9. 

                                                 

84 The models of Caramanis et al. (1987) and Berger and Schweppe (1989) are stochastic models and 
are discussed further in Chapter 9. 

85 This is principally due to the requirement to remain above a minimum frequency at all times, rather 
than maintaining a "loss of load probability" requirement as is more usual in larger power systems. 

86 This approach can be viewed as a regime under which market participants see an approximation to 
an expected reserve capacity price, and receive no additional compensation (apart from payments 
for the extra energy, at the energy price) when reserve is called upon.  In general, though, the 
marginal cost of production during contingency events is actually less than before the contingency, 
as cheaper power sources, which were held back for reserve purposes, are brought into play, and 
these will make a profit at the prevailing energy price. 
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A detailed description of the reserve problem as it relates to the New Zealand power 
system is provided in the following section.  In Section 6.3 we explore and analyse a 
dispatch based pricing model for the pricing of reserve provided by generating units.  

6.2. The Reserve Problem in New Zealand 

The range of contingencies which can occur in a power system is wide, and many 
less frequent contingencies cannot be covered without reducing load.  In New Zealand, 
operational guidelines define what sort of contingencies the system should be able to 
handle without interrupting service.  These are essentially rule-of-thumb guidelines, and 
are not necessarily economically optimal in a global sense.  The power system is expected 
to be able to cover the single worst possible contingency.  That is, there must be enough 
reserve generating capacity in the system, or the systems of each of New Zealand's two 
main islands, to cover the loss of the largest single source of power.  This is known as the 
"N-1" contingency requirement, where there are N generating units.  Similarly, the 
transmission system is expected, where physically possible, to be able to cope with the loss 
of a major transmission link. 

Until the recent expansion of the high voltage direct current (HVDC) inter-island 
link, the maximum nominal power level to be covered by spinning reserve in the North 
Island was usually the loss of one of the four Huntly machines (a maximum of 250MW).  
With South Island generation usually cheaper, on the margin, than that in the North Island, 
the HVDC transfer will often be maximised by the dispatcher.  Thus the loss of one pole 
(or line) of the HVDC link (a maximum of 550MW), is now generally the contingency that 
needs to be covered by North Island spinning reserve. 

The largest risk covered in the South Island is the loss of a Clyde machine (a 
maximum of 108MW).  South transfer by the HVDC link is rarely large enough to cause 
the South Island to have to cover the risk of its loss87. 

6.2.1. The Sources of Reserve 

The main form of reserve capacity is that carried by generating units which are 
producing active power below their full capacity, but which can ramp up their output 

                                                 

87  One exception being during the 1992 power shortage, when the levels of the South Island hydro 
lakes were unusually low.  The HVDC link was, at times, running with a high transfer south, so 
requiring that the South Island hydro system carry reserve in excess of the power being generated 
there. 
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rapidly if required to.  We refer to this reserve as spinning reserve.  This form of reserve is 
relatively cheap and readily available, though the provision of spinning reserve generally 
means that the cost of the dispatch rises due to there being more machines running. 

Another form of generating unit reserve is provided by stand-by generating units.  
These units are not operating at all when an emergency occurs, but can be brought on-line 
rapidly afterwards.  The role of stand-by units is to reduce the stress on the system once the 
system has recovered from the initial stages of an emergency. 

An alternative to increasing generation is to decrease load.  Load curtailment 
involves the voluntary shedding of all, or part, of a consumers load.  The amount which 
can be dropped, the warning times to be given, and the compensation required can be 
defined by a contract.  A potential difficulty in pricing curtailable load is that a customer's 
demand for power may rise in discrete steps.  For example, a factory may have a number 
of production lines and, if any load is to be dropped, an integer number of production lines 
must be shut down.  This integer aspect could preclude the usage of pure optimal marginal 
cost pricing techniques.  Oren and Smith (1992) describe the load curtailment problem, as 
well as a simple approach to scheduling and pricing curtailable load given limits on the 
number of allowable interruptions per year.   

The reserve source of final resort is blackout.  Blackout is similar to load curtailment 
but consumers of power have no choice as to whether to accept loss of service.  By 
definition, the marginal cost of blackout equals the local shortage cost. 

Transmission capacity can also be viewed as a form of reserve, both because it 
allows generating units to provide reserve to distant locations, and because spare 
transmission capacity may be required to cover transmission line failures.  Scheduling of 
reserve transmission capacity should be easier than generation capacity as we assume 
centralised operational control of the transmission network. 

6.2.2. The Reserve Constraints 

The reserve constraints, as applicable to New Zealand, are described by Miller and 
Turner (1991).  The approach of Miller and Turner assumes an "N-1" contingency scenario 
which can be covered through the use of spinning reserve and a limited amount of 
curtailable load.  

When a disruption occurs the system frequency will generally fall below its nominal 
level of 50Hz.  Figure 6.1 shows the typical behaviour of the frequency following a 
disruption. The system frequency will generally reach a minimum within five to seven 
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seconds.  It is important, however, that this frequency not fall below 48Hz88.  This 
constraint is called the Minimum Frequency Constraint.  The operating generating units 
must increase their outputs under governor control within the five to seven second interval 
to ensure that this minimum frequency is maintained.   
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Figure 6.1: North Island frequency response to the failure of one unit at Huntly. 

In addition to the frequency response requirement, there must be sufficient surplus 
reserve power available to permit the system to generate power close to 50Hz once the 
system returns to an equilibrium state.  This is the Surplus Reserve Constraint.  This is 
defined in New Zealand by requiring that there be some non-negative amount of reserve 
generation unused once the system has returned to 49.5Hz.  This surplus reserve is 
measured once the frequency has returned to 49.5Hz, approximately 20 to 30 seconds after 
the disruption.  The longer term issue of returning the frequency to 50Hz is ignored here, 
but is briefly discussed in Chapter 9. 

There is a strong correlation between the surplus reserve and the minimum frequency 
constraints.  This arises because these functions are both measures of the system's ability to 
contribute "instantaneous reserve".  However, while the surplus reserve function is 
measured in terms of active power, the minimum frequency function is measured in terms 

                                                 

88 The value of 48Hz is a limit set by Trans Power (NZ) Limited and corresponds to a 0.50Hz safety 
margin above the frequency at which progressive load shedding (blackout) occurs. 
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of frequency.  The functions defining the surplus reserve and the minimum frequency 
constraints are evaluated by numerical, rather than analytical, techniques using the model 
of Miller and Turner (1991).  In practice, the minimum frequency constraint is often the 
only binding constraint. 

The speed with which an in-service generating unit can increase its output (utilise its 
spinning reserve) varies between units.  This means that the choice of dispatched 
generating units and their level of generation, depends not only on the availability and cost 
of power, but also on the marginal impact each unit can make to the system frequency and 
total generation during the critical period after a disruption has occurred.   

6.2.3. The Reserve Contributions of Generating Units 

If we are to price accurately for reserve capacity we must have an understanding of 
the relationship between a generating unit's reserve contribution and its operating level.  
The ability of generating units to provide spinning reserve vary significantly with machine 
loading and machine type.  The discussion in this section is illustrated by the general 
reserve response curves shown in Figure 6.289.  The vertical axis of these graphs describe 
the contribution of a generating unit towards satisfying either the minimum frequency or 
surplus reserve constraint. 

 

                                                 

89 These curves, while based on results from the work of Miller and Turner, are purely illustrative 
examples and do not necessarily correspond to any actual individual generating unit. 
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Figure 6.2: Typical reserve contribution functions of thermal and hydro machines. 

The form of a thermal generating unit's contribution to the minimum frequency and 
surplus reserve requirements differ greatly.  A thermal generating unit's contribution to the 
minimum frequency requirement declines with increasing generation over the entire 
generating range.  In contrast, the relationship between generation level and contribution to 
the surplus reserve requirements can be divided into three ranges.  When a thermal 
generating unit is operating at low output the dynamic response of its boiler means it can 
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respond only minimally to a sudden increase in load.  For this reason the surplus reserve 
capability for low generation levels is low but increasing with generation (In practice, the 
generating unit may not provide any reserve until it is at some minimum output level.)90.  
The maximum reserve is available over an intermediate range.  In this range it is possible 
to increase generation by the maximum amount within the time required to meet an 
increase in net load.  At high generation levels the ability of the unit to increase output 
becomes restricted by the maximum loading limit.  Reserve decreases above this level, and 
none remains when the unit reaches its full capacity.  This latter situation is assumed in 
many simplistic analyses of spinning reserve in which each extra unit generated is assumed 
to reduce the reserve by approximately one unit. 

The forms of the thermal generating unit reserve curves we have described are not 
comprehensive.  In particular, a thermal generating unit is capable of building up a head of 
steam, that is, operating in "fixed pressure" mode instead of the more economical "sliding 
pressure" mode.  This reduces the efficiency of normal operations, but increases that unit's 
ability to supply reserve.  Consequently, the unit's reserve contribution function becomes 
dependent on two variables rather than one.  As this is not a major issue we ignore it here. 

Hydro generating units behave differently from thermal generating units.  When a 
partially loaded hydro unit is subjected to additional load, output drops momentarily with 
the inertia of increased water flow, before picking up to provide extra power.  Partially 
loaded hydro machines provide additional power at a slower rate than thermal generating 
units, but, once a hydro generating unit's output is increased, it can maintain the higher 
level more easily than thermal units.  Hydro operating loading levels are fairly strictly 
governed.  This is because a typical hydro machine should not, in general, be run at less 
than 50% loading, both for operational efficiency and to avoid possible cavitation damage 
to the turbine.  Consequently, a hydro units ability to contribute to meeting reserve 
requirements may be defined over a smaller range than for thermal generating units 
(generally 50%-90% loading). 

Hydro generating units can also be run in tail-water depressed mode.  In this mode 
the unit operates as a motor, powered by the system, with the turbine spinning in air.  
Hydro machines running in tail-water depressed mode respond by starting to generate 
when the system frequency falls to a "trip frequency" less than 50Hz, typically 49.0Hz.  
                                                 

90 This feature of the reserve function may also act as means of modelling integer aspects of the 
dispatch, at least for dispatch purposes, if not pricing.  If a generating unit has a non-zero, positive 
minimum operating level, and a non-zero reserve contribution at this point, inserting an upward 
sloping segment, from the origin, to that point, yields a continuous problem, while discouraging 
generation in the forbidden range. 
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Upon being tripped, water is allowed to flow past the turbine.  The rate at which additional 
power is supplied to the system is less than that of partially loaded hydro machines due to 
the time taken for the system frequency to fall to the trip frequency, and the time taken for 
the stationary water to be accelerated through the turbine.   

Figure 6.2 shows the typical form of a hydro generating unit's, or a hydro 
catchment's, contribution to the two reserve requirements.  In both cases the ability to 
provide reserve falls off with increasing loading. 

6.2.4. Reserve and the Transmission System 

The effectiveness of reserve capacity provided by generating units depends on the 
transmission system being able to cope with the altered power flows during a contingency.  
The transmission system also has to provide reserve capacity to cover line failures.  This 
means that the power flow equations must be feasible for both the pre-contingency and 
post-contingency states of the system.  This approach, which is used by Hogan (1992), is 
described in more detail in Chapter 9.  If insufficient transmission capacity is available, 
then additional spinning reserve, load curtailment or, in extreme cases, blackouts may be 
used in the region which loses power.   

The task of providing reserve is potentially complicated by losses in the transmission 
network.  If a generating unit provides some level of reserve at one point in the network 
then it can supply a greater or lesser quantity to other points in the network.  In theory, this 
spatial aspect may significantly complicate the reserve problem.  In practice it may be 
ignored, or greatly simplified, because the New Zealand reserve requirements are seldom 
calculated to such a fine level of detail that variations due to losses become important. 

A link like New Zealand's inter-island HVDC link requires special attention as it can 
be the largest single source of power in the receiving region.  In practice, the HVDC link 
can be modelled as a generating unit in the receiving island and as a load in the sending 
island. 

6.3. Pricing for Spinning Reserve 

6.3.1. Introduction 

The observed costs of providing reserve can be used in determining dispatch based 
prices for generation and reserve.  These prices must give generating companies an 
incentive to provide reserve.  In the absence of binding reserve and other operational 
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constraints, the least cost dispatch to meet the load would always be determined by 
dispatching stations according to the merit order, with the marginal cost of operating the 
most expensive, or marginal station, defining the marginal value of supplying power.  In 
theory, it could be possible for the optimal merit order dispatch to provide more than 
enough reserve to meet any reserve requirements.  If so, the reserve constraints are slack 
and reserve can be provided at zero cost.  In general, at least one reserve constraint 
(minimum frequency or surplus reserve) will be binding, so it will be necessary to alter the 
dispatch so as to provide this reserve.  This requires spreading the load across more 
generating units, some of which must operate below their full capacity.  This out of merit 
order dispatch will force the cost of supplying power to rise.  

In this section we present a mathematical representation of the reserve problem as it 
applies to the New Zealand system.  We will consider only reserve provided by generating 
units, and assume it to be dependent only on active power generation, as it is the pre-
dominant form of reserve.  Curtailable load and blackouts can be modelled in an analogous 
fashion to spinning reserve.  We present a dispatch based pricing model for spinning 
reserve, deriving it from the general model of Chapter 4, and explore the economic 
interpretation of these prices. 

6.3.2. The Primal Reserve Constraints 

A set of reserve constraints, RC, can be represented as: 

 Rh
PXS(P )G ≥ 0  ∀ ∈h RC  (6.1) 

Here PG
PXS  is the standard vector of active power generation levels.  Experience in 

New Zealand demonstrates that the contribution of a generating unit to a given reserve 
constraint is described by a concave function.  For simplicity we assume a general form of 
this function as shown in Figure 6.3.  The precise form and number of sections making up 
this function for a given generating unit depend upon the characteristics of that unit. 
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Figure 6.3: A general representative generating unit reserve availability curve. 

Given the output levels of all the generating units, we can estimate the marginal 
contribution of any unit to a reserve requirement91.  In doing this we are not estimating the 
entire reserve function, rather, we are estimating the derivatives of the reserve function 
with respect to the generating unit's output level.  We can define ρhi

−  to be the derivative of 

reserve constraint h with respect to the last unit of active power generated at node i92, and 
ρhi

+  to be the derivative of reserve constraint h with respect to the next unit of power that 

could be generated at node i93.  These distinctions are required to account for the 
discontinuity of the reserve constraint derivatives at the corner points in Figure6.3.  Note 
that convexity of the reserve function implies that ρhi

− ≥ρhi
+  for all i and h.  If PGi

*  is the 

observed level of generation at node i then we can define the linearised reserve 
contributions of generating unit i to be: 

 ( ) ( ) ++−− +−= GihiGihiGihiGihi PPPRPR ρρ*  ∀ ∈h RC  (6.2) 

                                                 

91 Tail-water depressed plant is a potential exception.  When called upon in an emergency, these 
generating units switch from consuming power to producing power, the power consumed invariably 
bearing little relation to the power that can be produced.  As this is an integer relationship it is not 
strictly possible to define their marginal contribution to the system reserve requirements.  In 
practice, however, a satisfactory approximation can be achieved by ensuring that their 
(approximated) marginal contributions are consistent with the relative values of their generation and 
reserve contributions.  

92 For ease of discussion we assume that there is only one generating unit per node.  Hence generating 
unit i is the unit at node i.  In general, though, we would need to model the contribution of either 
each individual generating unit or the combined contribution of all generating units attached at a 
bus-bar. 

93 For a surplus reserve constraint these derivatives have units of  MW/MW (i.e., it is unitless), while 
for a minimum frequency constraint the units are Hz/MW. 
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Here ( )*Gihi PR  is the reserve contribution at the observed generating level, PGi
* , of the 

generating unit at node i, while PGi
−  and PGi

+  represent, respectively, an incremental decrease 
and increase in generation relative to PGi

* .  For later reference, we observe that ( )*Gihi PR  can 

also be represented as: 

 ( ) **
GihihiGihi PaPR −+= ρ  ∀ ∈h RC  (6.3) 

Here ahi  is a linearisation constant. 

The combined first-order reserve contributions to constraint h by all the generating 
units will not necessarily match the total reserve requirement.   This difference reflects the 
fact that the reserve constraints may not be additively separable.  Consequently a linearised 
version of (6.1) might be represented as: 

 ( ) ( ) 00 ≥+= ∑
∈ PXSi

Gihihh PRRR GP  ∀ ∈h RC  (6.4) 

Here Rh0 , which may be positive or negative, describes that fraction of the reserve 

provided which cannot be attributed to any particular generating unit.  The physical units 
of Rh0  would be megawatts (MW), in the case of the surplus reserve constraint, and hertz 

(Hz), for the minimum frequency constraint.  Substituting (6.2) into (6.4), and moving the 
constants to the right-hand side, gives: 

 ( ) ( )∑∑
∈∈

++−− −−≥+−
PXSi

Gihih
PXSi

GihiGihi PRRPP *
0ρρ  ∀ ∈h RC  (6.5) 

A Fortran program called SPIN, developed by Drayton et al. (1992), calculates the 
reserve derivatives for generating units and the HVDC link.  SPIN uses the frequency 
routines used by Trans Power (NZ) Limited, which are based on the discussion in Miller 
and Turner (1991).  These derivatives are calculated by determining the marginal impact 
on each reserve constraint of a unit increase, or decrease, in generation at each node.  This 
analysis includes the risk bus, the term used to describe the single largest source of power, 
the failure of which is the contingency being covered.  The derivative of the surplus 
reserve constraint with respect to the generation at the risk bus is typically close to -1, that 
is, one more unit of generation from the risk bus increases the required surplus reserve by 
one unit.  In general, the derivative of the surplus reserve constraint with respect to the 
generation of a generating unit supplying reserve ranges from -1 to +1.   For the minimum 
frequency constraints the derivatives are typically of the order of a fraction of one hertz per 
megawatt. 

In addition to these derivatives, the program estimates the actual megawatt 
contribution made by each reserve source to the surplus reserve constraint and the 
contribution, in hertz, by each reserve source to the minimum frequency constraint.  This is 
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done by removing each reserve source in turn from the dispatch and recalculating the 
surplus reserve and minimum frequency constraints.  The resulting megawatt change in 
surplus reserve is called the surplus reserve contribution of a source, while the change in 
minimum frequency is the minimum frequency contribution94.  For the risk bus these 
contributions are negative, that is, removing the risk from the problem will improve the 
relevant reserve constraint.   

6.3.3. The Dual Reserve Pricing Relationships 

Arranging (6.5) in the form of the general primal constraint (4.6) gives: 

( ) ( ) ( ) 0=slack0 −+++−= ∑∑
∈∈

++−−

PXSi
Gihih

PXSi
GihiGihi

PXSA
h PRRPPH *

GP ρρ  ∀ ∈h RC  (6.6) 

Defining the reserve multiplier such that ν γh h≡ , and substituting the derivatives of 

(6.6) into (4.15) to (4.23) (constraint (4.24) is redundant) produces the reserve pricing 
model shown in (6.7) to (6.15).  The units of γh  are $/MW for a surplus reserve constraint 

and $/Hz for a minimum frequency constraint95. 

 

                                                 

94 This calculation is somewhat approximate, but the details do not affect our analysis here. 

95 The product of γh  and ρhi
− , or ρhi

+ , is always in units of $/MW. 
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 µQi =  β λQi Q−   ∀ ∈i PV  (6.11) 
 µVi =  βVi    ∀ ∈i PQ  (6.12) 

 cPi Pi h hi
h RC

− − −

∈

− − ∑υ γ ρ ≤   βPi ≤ cPi Pi h hi
h RC

+ + +

∈

+ − ∑υ γ ρ   ∀ ∈i PXS  (6.13) 

 cQi Qi
− −− υ ≤   βQi ≤ cQi Qi

+ ++ υ    ∀ ∈i PXS  (6.14) 

   βVi= υ υVi Vi
+ −−    ∀ ∈i PXS  (6.15)  
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The key impact of reserve requirements on the pricing problem is due to the reserve 
terms in (6.13).  If we assume that only one reserve constraint is binding (hence making 
the index h redundant), no generating unit capacity constraints are binding, and 
c c cPi Pi Pi

− += = , then (6.13) reduces to:  

 c cPi i Pi Pi i− ≤ ≤ −− +γρ β γρ  ∀ ∈i PXS  (6.16) 

This equation is a more general form of that proposed by Stadlin (1971).  If an 
observed dispatch does not satisfy this equation for every generating unit then either the 
system has not been dispatched optimally or not all constraints have been accounted for. 

The form of (6.16) arises from the fact that, in the energy market, the owners of 
generating unit i will earn a profit of βPi Pic−  on the last unit of active power generated.  If 

this generating unit is to reduce its generation so as to provide reserve then its (profit 
maximising) owners will want to receive at least the same profit on the production forgone.  
That one unit reduction in active power generation changes the reserve contribution by ρi

− , 
producing a return of γ 96 on each unit of reserve.  Hence, for there to be adequate 
incentive to provide this reserve, we require that ( )PiPii c−−≥− βγρ .  A similar argument 

explains the right side of (6.16).  The optimal point for a generating unit to operate at will 
be a point where the total combined profit from generation and reserve can be maximised.   

Note that, while there are no direct bounds imposed on the reserve prices in (6.13), 
these bounds are effectively imposed by the difference between the active power price 
bounds of the marginal generating units.  If any reserve constraint is binding then there 
will necessarily be more than one marginal station.  This reflects the fact that an out-of-
merit-order dispatch is required.  If one of these marginal stations increases its output to 
meet an increase in demand, other marginal stations may have to alter their output to 
ensure that the binding reserve constraints remain satisfied.  Suppose that we have 
observed that there are two  "truly"97 marginal generating units (1 and 2), with different 
marginal costs, in an optimal dispatch.  The reason they have been dispatched this way 
must be that these two generating units differ in their marginal ability to contribute to 
reserve requirements.  Specifically the cheaper marginal generating unit must be partially 
loaded because it is a more efficient source of reserve.  Otherwise we could find a cheaper 

                                                 

96 Remembering that we assume that reserve is never used, so no fuel costs need be subtracted from 
this. 

97 That is, they are marginal sources of both generation and reserve. 
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dispatch by transferring generation from the more expensive marginal generating unit to 
the cheaper one.  For generating unit 1 we have98:  

 β γρP Pc1 1 1= −   (6.17) 

Similarly, for generating unit 2, we must have: 

 β γρP Pc2 2 2= −   (6.18) 

Solving for γ  gives: 
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  (6.19) 

Here TP12  represents the cost of transmitting power between marginal nodes 1 and 2.  If 
TP12  were to be much smaller than the difference in marginal costs of the marginal 
generating units, then (6.19) can be approximated as: 

 
( )
( )21

21

ρρ
γ

−
−

= PP cc
  (6.20) 

In this form,  the price of spinning reserve, which must explain the discrepancy between 
the observed marginal costs, is proportional to that cost difference and inversely 
proportional to the difference in the marginal ability of the two generating units to 
contribute to reserve.  As the denominator becomes smaller, it becomes more difficult to 
explain why they are both marginal, and very high spinning reserve prices are then 
required.  In the limit, if they have identical marginal reserve contributions, it becomes 
impossible to explain this discrepancy and the reserve price becomes infinite. In practice, 
of course, the impact of the transmission price moderates this effect. 

Equations (6.17) and (6.18) also suggest that, unless the reserve derivative is zero for 
one of the generating units, the energy price will not correspond to the marginal cost of 
any particular generating unit, and that the energy price can only be determined jointly 
with the reserve prices. 

                                                 

98 In (6.17) and (6.18) we assume that ρ ρ ρ1 1 1= =− +  and ρ ρ ρ2 2 2= =− + . 
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6.3.4. Profitability of Reserve Provision 

The discussion thus far has been based on the marginal value of reserve and 
generation, but now we look at the total profits implied by reserve pricing.  We define the 
total profit as: 

 ( ) ( )GiiGiPiPii PRPc γβ +−=Π   (6.21) 

Here ( )Gii PR  is the reserve contribution of generating unit i given only one reserve 
constraint.  Substituting for ( )Gii PR  from (6.2), and then for ( )*Gii PR  from (6.3), while 

setting the changes in the observed generation to zero, gives a profit of: 

 
( ) ( )

( ) *

**

GiiPiPii

GiiiGiPiPii

Pca

PaPc

γρβγ
ργβ

−

−

+−+=

++−=Π
  (6.22) 

The bracketed term on the second line of (6.22) is the marginal profit earned by 
generating unit i.  If this generating unit is truly marginal then it makes no marginal profit, 
and the net profit is γai  (rather than zero as it would be if spinning reserve were not 

priced).   Net profits will exceed this for non-marginal generating units.  If generating unit 
i is a net provider of reserve, then the fact that ( )Gii PR  is positive and concave implies that 

ai  is non-negative, and hence that the owners of generating unit i collect an economic rent 
on non-marginal units of reserve. 

Naturally, a generating unit which makes a negative net contribution to spinning 
reserve (because ai  is negative or ρi

−  is negative over too large a range) will have to pay 
for spinning reserve, and thus receive less under this regime than if spinning reserve were 
not priced.  In the limit, its profits may all be absorbed by reserve payments and it will 
become marginal, but it  will not be forced to operate at a loss.  This may often be the case 
for unit deemed to created the largest contingency99. 

Finally, we must ask whether the system must make a net contribution to, or profit 
from, spinning reserve prices, or whether it merely effects a transfer between owners of 
generating units.  This depends on whether the reserve constraint is additively separable.  
If a reserve constraint is additively separable then the sum of the individual generating unit 
contributions should equal the observed net reserve, which should equal zero, if the 

                                                 

99 Note that, while the prices which this analysis produces seem valid for generating unit's providing 
reserve, the attribution of all of these costs to a single unit is not reasonable, in practice, and might 
create serious anomalies.  These anomalies reflect the fact that the standard does not correspond to 
an economic optimum, and can only be resolved in the context of a more comprehensive stochastic 
model, as discussed in Chapter 9. 
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constraint is binding.  However, if the reserve constraint is not additively separable, that is, 
Rh0  in (6.4) is non-zero, then the system will make a net profit or loss of γh hR 0  on reserve 

constraint h.  For example, if the surplus reserve constraint only requires frequency to be 
returned to 49.5Hz, rather than 50Hz, we should expect to find that the megawatt reserve 
required to achieve this is consistently less than the megawatt contingency being covered.  
Thus the system would make a profit out of the reserve market, rewarding the system for 
the contribution that it makes to meeting the reserve required by being able to recover the 
frequency reliably after it has reached 49.5Hz.  

6.3.5 An Example of Spinning Reserve Pricing  

Table 6.1 describes the observed state of three isolated generating units.  The reserve 
constraint has been reduced to the simple requirement that the system can still produce the 
same output if generating unit 1 were to fail. 

i PGi
max  

(MW) 

PGi
*  

(MW) 

R Pi Gi( )*  

(MW) 

ρi
−  ρi

+  c cPi Pi
− +=  

($/MW) 

1� 20� 20� -20� -1� -1� 1� 

2� 25� 15� +10� -1� -1� 2� 

3� 20� 5� +10� + 2
3

� 

+1
3

� 3� 

Table 6.1: Data describing an observed dispatch. 

The pricing constraints for the dispatch described by Table 6.1 are: 

 ( ) ( ) ++−−≤≤−− 11111 PP υγβγ   (6.23) 

 ( ) ( )1212 −−≤≤−− γβγ P   (6.24) 

 





+−≤≤






+−

3
13

3
23 γβγ P   (6.25) 

Because generating unit 1 is fully loaded the term υP1
+  in (6.23) can take what ever 

value is required for pricing consistency.  This effectively allows us to ignore the upper 
price bound in (6.23), so (6.23) simply requires that β γP ≥ +1 .  Constraint (6.24) requires 
β γP = +2  (in units of $/MW) while (6.24) and (6.25) together imply that 0 6 0 75. .≤ ≤γ  
(in units of $/MW).  This result reflects the fact that a unit decrease in demand would be 
met at least cost by generating unit 2 decreasing generation by 0.4MWh while generating 
unit 3 decreased generation by 0.6MW.  The net change in reserve would be zero and the 
total decrease in system cost would be $2.6.  The combination of prices corresponding to 
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this is βP =$2.6/MW and γ =$0.6/MW.  A unit increase in demand would be met by 
generating unit 2 increasing output by 0.25MW while generating unit 3 increased output 
by 0.75MW.  Again the net change in reserve would be zero while increasing total system 
cost by $2.75.  In this case the corresponding prices would be βP=$2.75/MW and 
γ =$0.75/MW. 

We have not specified an objective function for this problem.  The objective function 
which minimises (maximises) the profits of the generating companies amounts to 
minimising (maximising) βP .  The profits are summarised by Table 6.2. 

Maximising Generating Company Profits: βP=$2.75/MW, γ =$0.75/MW. 

i� PGi
*  

(MW)� 

R Pi Gi( )*  

(MW)� 

cPi
−  

($/MW)�

( ) *
GiPiP Pc −−β

($) 

γR Pi Gi( )*  

($) 

Π i  

($) 

1� 20� -20� 1� 35� -15� 20� 

2� 15� +10� 2� 11.25� 7.5� 18.75� 

3� 5� +10� 3� -1.25� 7.5� 6.25� 

� � � TOTAL:
� 

45� 0:� 45� 

Minimising Generating Company Profits: βP =$2.6/MWh, γ =$0.6/MWh. 

i� PGi
*  

(MW)� 

R Pi Gi( )*  

(MW)� 

cPi
−  

($/MW)�

( ) *
GiPiP Pc −−β  

($) 

γR Pi Gi( )*  

($) 

Π i  

($) 

1� 20� -20� 1� 32� -12� 20� 

2� 15� +10� 2 9 6 15 

3� 5� +10� 3� -2� 6� 4� 

� � � TOTAL:
� 

39� 0� 39� 

Table 6.2: The prices and profits corresponding to the observed dispatch. 

This example demonstrates the importance of pricing for reserve capacity.  It is the 
earnings received from reserve that make it viable for generating unit 3 to operate.  With 
out these earnings either generating unit 3 would not operate, or the price would have to 
rise to $3/MW.  The former case would lead to a shortage of reserve capacity, the latter 
would have the consumers subsidising the inadequate reliability of generating unit 1.  
Charging generating unit 1 for the reserve it requires lowers the costs of power to the 
consumers. 
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While, in this example, no generating unit earns less than it would have if no reserve 
requirements were imposed100, this is not a general result.  For instance, as discussed in 
Section 6.3.4., the owners of a generating unit may have to use all their profits earned from 
power generation to cover the cost of the generating unit's reserve requirements. 

6.4. Conclusion 

In this chapter we have described the nature of the reserve requirements currently 
employed in the operation of the New Zealand power system, and have presented a 
dispatch based pricing model corresponding to these requirements.  We have demonstrated 
that the price for reserve capacity availability should fully compensate those generating 
companies which provide reserve for the opportunity costs incurred on the energy 
production foregone.   

The model discussed in this chapter provide a rather simplistic view of reality, 
primarily because it ignores the variety of contingencies which may occur, and the way in 
which reserve may be used to meet them.  We have assumed that the costs associated with 
reserve usage are small due to the low probabilities involved.  However, the total expected 
cost of meeting a contingency may be significant if the cost of actually using reserve is 
high, as would be the case with blackouts.  Furthermore, if a market were to actually 
operate based on the reserve prices calculated by these methods, with the target reserve 
required being enough to compensate for the failure of the single largest source of power, 
then, so as to avoid paying out for reserve, the owner of that source will face an artificial 
second-order incentive to not be the largest source of power. 

Modelling the occurrence of contingencies significantly increases the complexity of 
the dispatch, and hence the reserve pricing problem.  We must model each possible 
contingency, and the reserve to meet those contingencies including curtailable load and 
blackout, while simultaneously ensuring that the all the post-contingency power flows are 
feasible.  In Chapter 9 we discuss such a model. 

 
                                                 

100 That is, there is no risk of any unit failing, and hence no reserve required.  There is, however, more 
than one sense in which we can define the "absence of reserve requirements".  If reserve 
requirements were ignored by the industry, even with a risk of generating unit failure, then the full 
cost of these failures would be borne during the contingencies, when the energy price would have to 
rise dramatically to reflect shortage.  In this situation, the only penalty for the owners of a 
generating unit which fails will be the requirement to buy power to cover their contractual 
requirements, and all generating units will make positive (marginal) profits in the energy market 
when they operate, these profits being no less than those for the "no risk" situation.   
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Chapter 7 

A "Best Compromise" Pricing Approach 

7.1. Introduction 

The models of Schweppe et al. (1988), Hogan (1991, 1992), and that presented in 
Chapter 4, determine power prices consistent with an optimal power system dispatch.  In 
practice however, especially with hindsight, dispatches often appear to be sub-optimal.  
This can occur because of genuine mis-judgements in the dispatch process, but is more 
often due to modelling limitations, lack of perfect foresight, and the fact that the system 
cannot instantly adapt to changing circumstances, or perceptions, as they occur.  
Mathematically, the fundamental reason for price inconsistencies is that it is impossible to 
determine a price at node i which is consistent with the price at some reference node, 
taking account of the cost of the marginal losses and congestion charges on binding 
transmission constraints, while also keeping the price at node i between the marginal cost 
of the last unit of power produced there and that of the next unit of power producible 
there101.  The only way the model of Chapter 4 can deal with a sub-optimal primal dispatch 
variable is to treat the observed value as being constrained, a step which is only practical 
for commodities not actually traded on the spot market, as the prices associated with these 
variables may have no relation to the costs.  In general, the model of Chapter 4 cannot 
determine prices economically consistent with an observed sub-optimal dispatch.  
Mathematically, this follows from the well-known result that the dual of a sub-optimal 
primal is not feasible.  

Wu et al. (1994) circumvent the problem of primal sub-optimality by abandoning the 
requirement that inter-nodal price differences be consistent with marginal costs, an 
approach which allows the cost of any primal sub-optimality to be included in the 
transmission charges.  This approach fails to produce useable marginal cost information 
about the quality of the dispatch, and is inappropriate for the market structure we consider.  

                                                 

101 If node i is a demand node then the price must lie between the marginal benefit which could be 
gained from consuming one more unit of power, and the benefit gained from the last unit of power 
consumed.  In practice we can treat consumers as generators of negative power and model them in 
the same manner. 
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An alternative approach to the problem is to introduce some slack, which is controlled by 
the pricing objective function, into the pricing constraints.  Such an approach was 
proposed by Schweppe et al. (1988) to account for a revenue constraint.  The revenue 
constraint was satisfied by minimising the weighted least squares deviations of the prices 
from the optimal spot price values.  Vankatesh et al. (1992) apply a similar approach to 
determining prices associated with a near optimal OPF solution, minimising the sum of 
squares of the pricing inconsistencies.  The least squares approach provides no economic 
interpretation for the infeasibility, however, and therefore has the potential to achieve price 
consistency by forcing parties to operate at a loss.   

To achieve price consistency we must allow violations of the price bounds subject to 
an objective function penalty.  If these penalties are arbitrary there will still be no 
economic interpretation of the dual, but we show in this chapter that it is possible to 
determine economically consistent values for these penalties.  Indeed, these penalties 
should reflect the economic loss suffered by those whose resources are dispatched sub-
optimally relative to the market prices.  This idea underlies the goal programming 
approach which we use to find a "best compromise price vector" which minimises the 
possibly (notional) side payments required to compensate those whose resources, with 
hindsight, have been inappropriately scheduled.  These compensation payments can be 
viewed as a penalty on those responsible for the sub-optimal dispatch.  Even if such 
payments are never made they are a legitimate measure of the economic loss suffered by 
the various parties.   

We will show that applying this best compromise pricing approach to a truly linear 
(or convex piece-wise linear) primal problem actually produces prices consistent with the 
optimal primal dispatch, even though the observed solution may be sub-optimal.  For 
linear approximations to complex non-linear systems the best compromise pricing 
approach may not reproduce the optimal prices (if they exist), but will produce prices 
which satisfy the basic commercial requirements of dispatch based pricing.  For instance, 
for an approximation of a non-linear power system, best compromise pricing can produce 
prices which minimise the compensation "side payments" required, and ensures that no 
buyer or seller of power will make a loss on the marginal transactions which occur in the 
sub-optimal solution.  We argue that this method provides a robust and workable approach 
to resolving the dilemmas and disputes that will inevitably arise in real power systems 
where substantial sums of money are at stake. 

In Section 7.2 we derive a best compromise pricing formulation for a linear primal 
problem.  We examine the behaviour of this formulation, and compare it with standard 
duality theory and ex post pricing. We discuss possible applications of best compromise 
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pricing to piece-wise linear and more general non-linear problems in Sections 7.4 and 7.5.  
An illustrative example of best compromise pricing is presented in Section 7.6.  A 
discussion of some of the second order incentives that best compromise pricing might 
create is presented in Section 7.7. 

7.2. Philosophy of Best Compromise Pricing 

The underlying philosophical basis of best compromise pricing is that, in a dispatch 
based pricing regime, the dispatcher must provide some economically consistent 
explanation of  any discrepancy between the actual costs of a dispatch and the perceived 
"minimum" cost dispatch.  Regardless of the precise form of bids and offers of market 
participants, whether these contain purely marginal cost terms or a combination of 
commitment and marginal cost terms, there will be a feasible dispatch which has the 
minimum possible cost associated with it.  This minimum cost will not necessarily be the 
minimum cost associated with a truly competitive market, though, unless the bids and 
offers represent the true costs faced by the market participants.   

The "ideal" pricing regime will be commercially consistent with these bids and 
offers, given the observed dispatch.  In practice, however, the system is often going to be 
dispatched at a higher cost than this ideal minimum, if simply due to the limits on dispatch 
technology.  The commercial implication of these higher costs is that when the 
corresponding prices are announced some parties might insist that the dispatch of their 
assets was not optimal with respect to these prices.  Furthermore, consumers are ultimately 
going to have to pay this cost, and will want it to be minimised.   

We propose best compromise pricing as a means for providing an economic 
explanation of this cost discrepancy which also, potentially, creates an incentive to 
minimise the discrepancy.  In Chapter 3 we argue that the dispatcher should determine 
prices which provide an economic explanation of an observed dispatch, and which are 
consistent with the bids and offers of market participants.  If it is not possible to achieve 
this solely with standard market clearing prices then some of these prices must necessarily 
be inconsistent with the bids and offers.  In this event, we can introduce additional price 
terms, which we refer to as violation prices, into the problem.  Violation prices are applied, 
in addition to the market clearing prices, to those market transactions which would violate 
bids or offers when evaluated using the market clearing prices above.  The combination of 
market clearing prices and violation prices can now be consistent with the bids and offers, 
while the market clearing price itself may not be.  In effect, we are still applying the 
conditions of dispatch based pricing, but are expanding the price set to include prices for 
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resources used consistently with bids and offers (the "market clearing price") and prices 
for those resources which are not used consistently (the "violation prices"). 

The violation prices can be used to define the compensation payments which need to 
be paid to each market participant so as to produce a total payment consistent with that 
participant's bid or offer.  The revenue required to cover these "compensation payments" 
should be collected from the market as a whole, as a fee reflecting the cost resulting from a 
decentralised dispatch, technical limitations, and the cost of uncertainty.  These funds 
might be collected by the dispatcher at the beginning of the year and paid out in the form 
of compensation payments throughout the year.  If the dispatcher were to be allowed to 
keep any of the fee remaining at the end of the year then this creates an incentive for the 
dispatcher to minimise the need for compensation payments, either by improving dispatch 
procedures or by increasing the accuracy of the pricing model.  Conversely, if the 
dispatcher were to be liable to pay any excess if the compensation payments exceed the 
fees collected at the beginning of the year, the dispatcher will be encouraged to dispatch 
the system in a manner which keeps the observed dispatch cost as close as possible to the 
minimum possible cost corresponding to a feasible dispatch102. 

Thus this procedure indicates which aspects of the dispatch/pricing model system are 
worth improving and provides the dispatcher with an incentive to improve them, while 
ensuring that the market participants are hedged against the cost of mis-dispatch. 

The OPF problem, upon which the spot prices of Chapter 4 have been based, 
assumes a single period, unchanging dispatch, with all integer terms fixed externally.  The 
important implication of this is that the OPF is only an approximation of the more general 
dispatch problem, and hence provides only limited information to the pricing problem.  
One implication of this is that best compromise prices produced by a model based purely 
on an OPF may make what, in the wider sense, is a truly optimal dispatch appear to be sub-
optimal, with compensation being paid.  Similarly, best compromise pricing make what is 
a truly sub-optimal dispatch appear to be optimal, with no compensation being paid.  In 
this chapter we assume that the OPF provides a full description of the dispatch problem, 
but consider the wider issue of compensation in Chapter 10. 

                                                 

102 Note that care is required in designing these arrangements so that the dispatcher is rewarded for the 
benefits delivered from improved dispatch as well as facing the penalties for mis-dispatch.  The 
details of such arrangements are beyond this thesis. 
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7.3. Best Compromise Pricing for Linear Problems 

7.3.1. Derivation of a Best Compromise Pricing Model 

To derive best compromise prices we assume a general linear primal of the form 
shown in (7.1) to (7.4).  While actual primal problems may not be linear, we will 
subsequently show how they might be represented as linear problems. 

 ∑
∈ NDI

x xc
A

AA   
x

Minimise   (7.1) 

subject to: 

 ∑
∈ NDI

h xa
A

AA  = bh  :ςh ∀ ∈h CS  (7.2) 

 −xA  ≥ −xmax
A  :υ xA

+  ∀ ∈A NDI  (7.3) 

 xA  ≥ xmin
A  :υ xA

−  ∀ ∈A NDI  (7.4) 

The vector x  comprises variables from the set NDI, comprising all dependent and 
independent variables.  This would include, for example, line flows as well as nodal power 
injections103.  All these variables have upper and lower bounds and incur a usage cost of 
cxA  (possibly zero).  The set CS describes the set of all constraints which define the 
relationships between the independent and dependent variables.  Each unit of variable xA  
consumes ahA  units of resource h, of which there are bh  units available.  The dual of this 

problem is: 
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Maximise   (7.5) 

subject to: 

 −+

∈

+−∑ AAA xx
CSh

hha υυς  = cxA  :xA  ∀ ∈A NDI  (7.6) 

We can define an observed solution vector for the primal problem to be xo .  We do 
not assume that this observed solution is optimal, though it is required to be feasible104.  
                                                 

103 The issue of the incentives which arise when the dispatcher is also the grid owner are discussed 
below. 

104 There is a real possibility that the primal dispatch problem will appear to be infeasible relative to the 
limits specified in the model.  In practice this situation is resolved by accepting that some 
constraints will be violated at a cost.  As suggested by Stott, Alsac, and Monticelli (1987), we can 
achieve this by allowing the primal constraints to be violated, but subject to objective function 
penalties.  This effectively removes any feasibility problem.  Obviously this modification is not 
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Given this solution, we want to determine a set of prices which will be "consistent", in 
some sense, with the marginal costs of the resources employed or available.  For a linear 
primal problem it is not difficult to achieve these goals.  We first introduce new variables, 
which describe potential hypothetical variations in the observed solution, as follows: 

 x x xo
A A A= + ∆    ∀ ∈A NDI  (7.7) 

Here ∆xA  is unconstrained in sign, and represents the change which could have been 
applied to xo

A  to reach a given value of xA .  This transformation allows us to express a 

linear primal problem in a form centred on the observed solution, but allowing for 
adjustments which could have been required to achieve optimality, for example.  This 
formulation is described by (7.8) to (7.11). 
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Minimise   (7.8) 

subject to: 
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A
AAA  = bh   ∀ ∈h CS  (7.9) 

 − −x xo
A A∆  ≥ −xmax

A   ∀ ∈A NDI  (7.10) 

 x xo
A A+ ∆  ≥ xmin

A   ∀ ∈A NDI  (7.11) 

The requirement of primal feasibility means that: 

 a x bh
o

NDI
hA A

A∈
∑ =  ∀ ∈A NDI  (7.12) 

Hence the constant terms in (7.9) cancel.  We can also remove the constant terms in (7.8) 
from the minimisation.  The resulting primal problem is described by (7.13) to (7.16), 
where the shadow prices are noted on the far right. 

                                                                                                                                                    

necessary for those constraints which cannot meaningfully be violated, such as the energy 
conservation constraints. 
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 −∆xA  ( )omax xx AA +−≥  :υ xA
+  ∀ ∈A NDI  (7.15) 

 ∆xA  ≥ ( )omin xx AA −  :υ xA
−  ∀ ∈A NDI  (7.16) 

This new formulation is identical to the original optimisation problem described by (7.1) to 
(7.4), but with the coordinate system now transformed so that all variables are measured 
relative to the observed solution.  At optimality (7.7) requires: 
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The right hand sides of (7.15) and (7.16) describe the capacity of variable xA  which 
is remaining, or has been used, respectively105.  For a feasible xo

A  these terms will always 
be non-negative.  The change in resource usage required to accommodate a non-zero ∆xA  

is described by (7.14). 

The dual problem corresponding to either (7.1) to (7.4) or (7.13) to (7.16) is: 
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subject to: 
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This formulation is identical to (7.5) and (7.6), the dual of the original primal.  This can be 
seen by observing that (7.6) and (7.19) are identical, while (7.18) can be re-arranged as 
follows: 
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But using (7.19) and (7.12) we get: 

                                                 

105 Note that x min
A  and x max

A  are not necessarily the absolute minimum and maximum value of, say, the 
output of a given generating unit, but the minimum and maximum levels which can be achieved at a 
marginal cost of cxA . 
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Substituting this into (7.20) gives (7.5), the original dual objective function. 

Dropping the constants from the objective function in (7.18), changing the sign of 
this objective function, and defining β ςx h h

h CS

aA A=
∈
∑  we get the formulation shown in (7.22) 

to (7.24), which we will refer to as the best compromise pricing problem. 

 ( ) ( )( )∑
∈

−+

≥
−+−

+−
NDI

mino
x

omax
x xxxx

xx A
AAAAAA υυ   

υ ς,,υ 0
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subject to: 

 β ςx h h
h CS
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∈
∑   ∀ ∈A NDI  (7.23) 

 β υ υx x xA A A− ++ − = cxA  ∀ ∈A NDI  (7.24) 

7.3.2. Interpretation of the Best Compromise Pricing Problem 

We have shown that the formulation in (7.22) to (7.24) is just the dual of the original, 
linear primal problem, but described with reference to an arbitrary observed solution, 
rather than necessarily an optimal solution as in the approach of Hogan et al. (1995).  
Furthermore, as the coordinate transformation we have applied to the primal is a simple 
translation, with a change in xA  in the original primal formulation having the same impact 
on the margin as a change in ∆xA  in the translated problem, the marginal resources being 

priced for are identical in both cases.  It follows that the dual of the transformed problem 
will produce the same shadow prices as the dual of the original primal formulation (or, if 
the dual of the original primal formulation is degenerate, it will select a solution from the 
same set of degenerate solutions)106.  Hence, while appearing to make no reference to the 
optimal primal solution, the best compromise pricing formulation has all the information it 
needs to determine the direction in which x*  lies, and can determine shadow prices 
consistent with the optimal solution of the original primal problem. 

                                                 

106 If x x xmin o max
A A A= =  then no term corresponding to xA  appears in (7.22), with (7.24) requires that 

β xA  be unbounded.  This is consistent with the dual of the original primal problem, however, as xA  
is fixed in value, and duality theory therefore requires that its shadow price be unbounded. 
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It is apparent from (7.17) and (7.18), and the requirement that the optimal primal 
objective function value equals the optimal dual objective function value, that: 
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That is, the objective function in (7.22) describes the difference in cost between the 
observed and optimal solutions.  Since the primal problem is a minimisation problem this 
difference must be non-negative.  In particular, the value of (7.22) will be zero if x x*o = .   

The best compromise pricing constraints are identical to the dual constraints of the 
original primal problem, though we have expressed (7.23) and (7.24) in a form similar to 
that of (4.61) to (4.66) in Chapter 4.  That is, (7.23) defines the pricing relationships while 
(7.24) describes the bounds on the prices107.  An important difference, though, is that the 
pricing relationships defined by (4.61) to (4.63) clearly distinguish between the prices for 
primal independent and dependent variables, whereas (7.23) makes no such distinction.  
Equation (7.24) requires that the multipliers on the primal variable bounds, υxA

−  and υxA
+  for 

all A ∈ NDI , must exactly account for the difference between the marginal cost of using a 
variable and the market price, βxA , associated with that variable.  For optimally dispatched 

variables these terms describe the rents earned on the limited capacity available at that 
cost, in the same manner as discussed in Chapter 4.  For resources which have not been 
used optimally these rents can be thought of as violation prices, which apply to the excess, 
or shortfall, in resource usage.  These rents can take any positive value and hence ensure 
that a feasible dual solution can be found.  Regardless of whether we view υxA

−  and υxA
+  as 

violation prices or capacity rents we still require that, for each A , at most only one of υxA
−  

and υxA
+  will have a non-zero value, as their can only be value in changing a binding primal 

capacity constraint corresponding to one of these for any given primal optimal solution.  

The best compromise pricing formulation can be thought of as a goal programming 
problem (Lee, 1972), though with the unusual feature of being applied to a dual 
programming problem.  The goal in this context is to determine prices, βxA , which have the 

greatest possible degree of consistency with the observed primal dispatch and its costs.  
Equivalently, we can view the objective as being to minimise the capacity rents foregone 
due to primal non-optimality.  We can illustrate this by using the pricing relationships 
corresponding to an optimal primal solution, xA

*, to show how the best compromise pricing 

objective function works to minimise the compensation corresponding to an observed 
solution x o

A .  Thus: 

                                                 

107 Here (7.24) is an equality, rather than an inequality as in Chapter 4, because we have assumed a 
single cost applies over the range of each primal variable. 
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•  if x xmin
A A
* =  then υ βx x xcA A A

− = − ≥ 0 and υ xA
+ = 0 .  Thus any βx xcA A≤  is an acceptable 

price.  If, however, x xo min
A A>  then the objective function acts to minimise 

( ) ( )( )mino
xx

mino
x xxcxx AAAAAAA −−=−− βυ .  Thus the objective function works to set 

βx xcA A=  or otherwise will work to determine a value of βx xcA A<  which minimises 
the loss due to over-using variable xA  in a situation when its use is not profitable 

(subject to trade-offs with other compensation terms).   

•  Similarly, if x xmax
A A
* =  then υ βx x xcA A A

+ = − ≥ 0 and υ xA
− = 0 .  In this situation any 

βx xcA A≥  is an acceptable price.  If, however, x xo max
A A<  then the objective function 

acts to minimise ( ) ( )( )omax
xx

omax
x xxcxx AAAAAAA −−=−+ βυ .  Thus the objective function 

works to set βx xcA A=  or otherwise will work to determine a value of βx xcA A>  which 
minimises the loss due to under-using variable xA  in a situation when its use is 

profitable (subject to trade-offs with other compensation terms).  

•  if x x xmin max
A A A< <*  then υ xA

+ = 0  and υ xA
− = 0  so no terms relating to xA  have any 

impact on the best compromise pricing objective function (at its optimal solution).  
That is, variable xA  is marginal, with βx xcA A= , and no profit is made on this variable, 

regardless of whether it is optimally dispatched or not. 

Thus our model generalises the original dual formulation, in which constraints were 
priced if, and only if, they were binding, by assigning shadow prices to other constraints 
where necessary.  The best compromise pricing objective function tends to assign prices to 
those constraints which are "most nearly binding", in that xo

A  is close to either xmin
A  or xmax

A , 

with the trade-off being determined via (7.23).  The net effect of this trade-off is to 
produce shadow prices consistent with an optimal primal solution. 

In a market situation, if all108 suppliers of services are to be paid the optimal prices, 
then a sum of money, equalling the optimal value of the best compromise pricing objective 
function, must be injected into the market.  This injection can be interpreted as a 
compensation payment. 

                                                 

108 We discuss below, for the situation where the dispatcher is also the grid owner, a "notional 
unconstrained network" where capacity provided by the transmission grid owner are excluded from 
the best compromise pricing formulation. 
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Figure 7.1. Compensation payments for linear power system dispatch. 
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Figure 7.1 illustrates the process of minimising compensation payments for a simple 
linear power system example.  The top graph describes an optimal dispatch.  The specified 
demand level is met using the cheapest generating units, fully loading generating units 1 
and 2 while supplying the marginal unit with generating unit 3.  The optimal price, βP

* , is, 
therefore, just the marginal cost of operating generating unit 3.  The other three graphs 
depict possible options for pricing for a sub-optimal dispatch.  This dispatch is sub-optimal 
because generating unit 4 has been partially loaded instead of generating unit 3, while 
generating unit 2 is operating with reduced output.  While demand is still met, the cost of 
the dispatch is now greater than for the optimal case.  The second graph depicts what 
happens when the price, ′βP , has been set lower than βP

* , in this case being the marginal 
cost of generating unit 2.  The black areas indicate the total compensation payments that 
must be made to off-set the losses incurred by generating unit 4 (the marginal rate of 
compensation, i.e. the violation price, is just cP P4 − ′β ).  No compensation need be paid to 
generating unit 3 for not operating, because, at this price, it should not operate.  Likewise, 
generating unit 2 is marginal, making no profit on the margin, and hence does not need to 
be compensated for its unused capacity. 

The third graph in Figure 7.1 illustrates an alternative situation in which the price is 
set to equal ′′βP , which exceeds βP

* , equalling the marginal cost of generating unit 4.  At 
this price generating units 1 and 2 make ample profit on what they generate, but generating 
unit 2 will require compensation for that part of its capacity not called upon.  Similarly, 
generating unit 3 will require compensation for the profit it could have earned had it 
operated.  Generating unit 4 requires no compensation as it is marginal.  The final graph 
shows the compensation required when the price is set to βP

* .  Compensation must be paid 
for the unused capacity of generating unit 2 and for the uneconomical use of generating 
unit 4. 

The best compromise pricing approach works to minimise the compensation 
payments and hence minimise the black regions of Figure 7.1.  The minimum 
compensation must occur at a price of βP

* , since, for a linear primal problem, the best 
compromise pricing solution must, at optimality, produce prices identical to those for an 
optimal dual solution to the original primal problem.  This can be illustrated by noting that 
a unit increase in price for the second graph (i.e., price = ′βP+1) would require an increase 
in compensation to the owners of generating unit 2 equalling B (referring to the scale 
below the graphs) while allowing compensation to the owners of generating unit 4 to be 
decreased by E.  But if demand is being satisfied we require that E = B + C, so the net 
decrease in compensation required is C.  Thus moving the price towards βP

*  has decreased 
the compensation required.  Table 7.1 shows, for the sub-optimal dispatch, the change in 
compensation required for a unit increase and decrease to the prices in each of the last 
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three graphs of Figure 7.1.  Figure 7.2. provides a graphical representation of the results in 
Table 7.1. Since compensation must be minimised at the point where no better solution can 
be found by varying the price, this table shows that the optimal solution is to set the price 
equal to that for the optimal dispatch, i.e. βP

* . 

Declared Price Net Change in Compensation109 for: 

 A unit increase in price A unit decrease in price 

′βP  B - E = -C < 0 A + E > 0 

′′βP  B + C + D > 0 E - B - C - D = -D < 0 

βP
*  B + C + D - E = D > 0 E - B = C > 0 

Table 7.1. Impact of price changes on compensation. 

cP 2β ′ = cP 4β ′′ =

Compensation Payment

cP 3β * = Price

A+E

C D

B+C+D

P PP  
Figure 7.2. Compensation as a function of price. 

If the compensation payments suggested in this example were to actually be paid to 
generating companies, then, regardless of what price is actually used, they will all consider 
themselves to have received an income consistent with their bids.  However, the generating 
companies will only earn the amount they would have had the dispatch been optimal if the 
optimal price βP

*  is used as the basis for compensation.  This can be seen by noting that 

                                                 

109 Note that E = B + C. 
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generating unit 2 earns no marginal profit at a price of ′βP , and a significant profit at a price 
of ′′βP , but should really only earn an intermediate profit at the optimal price of βP

* . 

Figure 7.2. demonstrates that regardless of the method used to dispatch the system, 
best compromise pricing gives the dispatcher an incentive to set the prices at the point 
which minimises the compensation required. 

7.3.3. Degenerate Problems: A Second Phase 

If the optimal dual solution is degenerate, then the solution to the best compromise 
pricing approach will also be degenerate.  Degeneracy will typically arise because a spot 
price is free to vary between the marginal costs of two generation cost ranges110.  If there is 
freedom to vary the spot prices there will also be freedom to vary the compensation 
payments111 to each market participant.  This introduces the potential for a second phase to 
our solution process, using an objective function designed to achieve a preferred 
distribution of benefit between the participants. 

This situation is analogous to the standard ex post pricing situation where we 
introduce an arbitrary dual objective function to choose between degenerate dual solutions.  
In that situation we imposed the complementary slackness conditions directly on the dual 
constraints, using the "< >" function.  Again we can introduce an arbitrary objective 
function, but rather than using the complementary slackness conditions we can re-solve the 
dual problem, allowing the prices to vary subject to requiring that the goal programming 
objective function of (7.22) must always equal the optimal value found by solving (7.22) to 
(7.24), i.e., the compensation that needs to be injected into the market.  If the optimal value 
of (7.22) is found to be Ω  (i.e., this is the minimum compensation required), then the 
phase two problem is: 

                                                 

110 This situation is likely to arise when the primal objective function is piece-wise linear. 

111 Though the total compensation must remain the same in each situation. 
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 Function ObjectiveArbitrary    
ς,υ,υ 0

Optimise
≥+−

xx

  (7.26) 

subject to: 

 β ςx h h
h CS

aA A=
∈
∑   ∀ ∈A NDI  (7.27) 

 β υ υx x xA A A− ++ − = cxA  ∀ ∈A NDI  (7.28) 

 ( ) ( )( )∑
∈

−+ −+−
NDI

mino
x

omax
x xxxx

A
AAAAAA υυ = Ω   (7.29) 

The prices can now vary as need be to allow the objective function to find the best 
value of (7.26) with (7.29) ensuring that these prices are consistent with the compensation 
implied by (7.22) to (7.24).   

In effect (7.29) plays the same role as the "< >" functions in the model of Chapter 4.  
There we only needed to consider the binding primal constraints because these are the only 
terms that drove the prices.  Best compromise prices, however, are driven by constraints 
which should be binding at primal optimality, rather than by the constraints which are 
binding at the observed solution.  This is why we cannot use the "< >" function of 
Chapter 4, as all primal constraint terms must be included for best compromise pricing to 
reproduce the optimal prices.   

It may appear that we might as well simply re-solve the original primal problem and 
determine the optimal prices, rather than using a specialised best compromise pricing 
version of ex post pricing.  This might be true for simple linear problems in which all 
resources are treated in an even handed way for pricing purposes, but we show below that 
this method can be applied to a wide range of significantly more complex problems. 

The "arbitrary objective function" in (7.26) could be the same as that used for 
conventional dispatch based pricing, such as minimising the network's rent.  However, 
since some compensation payments may accrue to the network, and since we assume that 
the network is also the dispatcher, we may want to control the trade-off between 
compensation payments to the network and the market players, while also controlling the 
distribution of the normal rent.  This may be necessary to prevent the network from 
maximising its own compensation payments.  This issue is discussed further in Section 7.6. 

7.3.4 An Example of Best Compromise Pricing 

To further analyse best compromise pricing it is useful to consider a more complex 
example.  A simple power system dispatch is illustrated by Figure 7.3. 
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Figure 7.3. An optimal linear power system dispatch. 

Region A is primarily a producer of power, while Region B is primarily a consumer 
of power.  We ignore transmission losses, and assume that the consumer's demand levels 
are inelastic with price112.  The dispatch shown is optimal, with Region A producing all the 
power it can, at a cost of $20/MW, given that the amount of power it can export to Region 
B is limited by the transmission line capacity.  The cheapest generation in Region B is 
used to supplement the imported power so as to meet local demand. 

As demand is being satisfied at least cost, marginal cost pricing theory requires that 
the spot price in Region A equals $20/MW, as at this price the owner of generating unit 1 
will have no incentive to increase or decrease generation.  In Region B the price must be 
$30/MW, as at this price the owner of generating unit 2 will have no incentive to change 
its output, while the owner of generating unit 3 will lack the incentive to begin generating.  
If we assume a one-to-one relationship between increased generation in Region A and flow 
on the transmission line then the marginal value of line flow must be $10/MW, reflecting 
the reduced cost of generation if one more unit of line capacity were to be available.  For 
this example, both operating generating units will just break even, while the grid owner 
will earn $10/MW ×  1000MW = $10,000. 

Now consider the alternative, seemingly inconsistent dispatch shown in Figure 7.4. 

                                                 

112 This assumption has been made for ease of exposition.  In general, we could model each consumer 
as having a demand curve, in much the same way as we represent generation here.  Consumers who 
are misdispatched could be compensated in the same manner as generating companies. 
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Figure 7.4. An inconsistent observed linear power system dispatch. 

The dispatch in Figure 7.4 appears inconsistent because generating unit 1 has the 
generating capacity to generate, and the transmission line the ability to send, up to an 
additional 200MW to Region B, allowing a reduction in output by the more expensive 
generating units there. 

Marginal cost pricing theory requires that the price be the same in both regions, as 
there is no binding transmission constraint.  But the fact that generating unit 1 is only 
partially loaded suggests that this price should equal its marginal cost of $20/MW, while, 
by the same argument, generating unit 3's marginal cost should set the price equal to 
$40/MW.  This is an example of a pricing inconsistency, requiring the application of best 
compromise pricing.   

If we assume each generating unit and the transmission link to have lower capacity 
bounds of zero then the best compromise pricing formulation has the form: 

( ) ( ) ( ) ( )( )∑
∈

−+−+

≥
−+−+−+−

−+−+
PXSi

min
i

o
iPi

o
i

max
iPi

mino
P

omax
P PPPPPPPP

PPP

υυυυ
λυυ ,υ,υ, PP 0

Minimise
,

 (7.30) 

Subject to: 

 βPi  = λ P   i PXS A∈ ∩  (7.31) 

 βPi  = +λ ηP P   i PXS B∈ ∩  (7.32) 

 β υ υPi Pi Pi− ++ −  = cPi   i PXS∈  (7.33) 

 η υ υP P P− ++ −  = 0    (7.34) 

The sets A and B describe the set of generating units in each region, while ηP  is the 

transmission link multiplier.  Simplifying the constraints and substituting the numbers 
from Figure 7.4 gives: 
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PPP
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,

 (7.35) 

Subject to: 

 λ υ υP P P− ++ −
1 1 = 20    (7.36) 

 λ η υ υP P P P+ − ++ −
2 2 = 30   (7.37) 

 λ η υ υP P P P+ − ++ −
3 3  = 40    (7.38) 

 η υ υP P P− ++ −  = 0    (7.39) 

The optimal solution has λ P =$20/MW while ηP =$10/MW, i.e. the price in region 

A is $20/MW and the price in region B is $30/MW.  All violation prices equal zero except 
for υP3

− =$10/MW (i.e. generating unit 3 should be compensated for the fact that it is 
generating at a loss)113 and υ ηP P

+ = =$10/MW (i.e. the link owner should be compensated 

for the capacity which should have been used but was not).  The optimal objective function 
value equals $2500, which an inspection reveals to be the difference between the 
generation costs in Figures 7.3 and 7.4.  The resulting prices are, in fact, those 
corresponding to the optimal dispatch of Figure 7.3. 

If the demand in region B had been 1250MW in Figure 7.3 then the optimal dispatch 
would be the same, except that generating unit 2 would be fully loaded, generating 
250MW.  In this situation the price in region A would still be $20/MW but the price in 
region B must be between $30/MW (the marginal cost of generating unit 2) and $40/MW 
(the marginal cost of generating unit 3), and hence the transmission constraint shadow 
price can be anywhere between $10/MW and $20/MW.  This is a degenerate dual solution.  
A dual objective function which minimises the network's rent will set ηP =$10/MW and 

the region B price to $30/MW for this optimal dispatch.   

If a sub-optimal dispatch occurred, which was, say, identical to that in Figure 7.4 but 
with a demand of 1250MW in region B and with generating unit 3 producing 200MW, 
then possible extreme price compensation combinations are shown in Table 7.2. 

                                                 

113 Generating unit 1 should have its output increased, but, as the price in Region A equals its marginal 
cost, no profit is gained in doing this, so no compensation is required. 
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βB  
$/MW 

υ P3
−  

$/MW 

υ P
−  

$/MW 
Rent 

$1000 
Compensation 

$1000 

   G1 G2 G3 Grid G1 G2 G3 Grid Total

30 10 10 0 0 -2 8 0 0 2 2 4 

40 0 20 0 2.5 0 16 0 0 0 4 4 

Table 7.2. Comparison of rent and compensation 

The price discrepancies between the nodes are either explained by a link shadow 
price of $10/MW, with generating unit 2 being marginal in region B and generating unit 3 
being sub-optimally dispatched, or a link shadow price of $20/MW, and generating unit 3 
being marginal (though not optimally dispatched, but no compensation is required). 

The total compensation payment is $4000 in each case, but the lower region B price 
solution corresponds to maximising the compensation payout to generating companies 
($2000)and minimising the network's rent ($8000 plus $2000 compensation), while the 
higher region B price solution gives no compensation payouts to generating companies and 
maximises the network's rent ($16000 plus $4000 compensation).  The latter solution 
seems preferable if we want to minimise the fixed cost payouts for network access, the 
former is preferable if we want to minimise the network's rent. 

7.3.5. Summary of the Theoretical Properties of Best Compromise Pricing  
 for Linear Problems 

The following theorem summarises some important properties of best compromise 
pricing. 

Theorem 7.1: Define the best compromise pricing problem to be that of finding a set of 
market clearing spot prices and (notional) side payments so as to minimise the 
(notional) side payments which need to be made so that all offers and bids are 
respected.   

Proposition 1: Then for any linear primal problem and any feasible solution to this 
problem, the optimal spot prices result from the best compromise pricing formulation 
of (7.22) to (7.24).   

Proposition 2: The optimal best compromise pricing objective function must, for a primal 
cost minimisation problem, equal the difference between the primal objective 
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function value for the observed feasible solution and the primal objective function 
value for an optimal primal solution.   

Proposition 3: This extra payment must be injected into the market to provide 
compensation payments for those mis-dispatched relative to the market clearing spot 
prices. 

7.4. Best Compromise Pricing for Piece-Wise Linear Problems 

7.4.1. The Impact of Simplified Primal Problem Representations 

Piece-wise linear problems are a special case of linear problems, and best 
compromise pricing could be applied to these as if they were normal linear problems.  
However it is useful to explore the alternative ways in which best compromise pricing 
could be applied to such problems, as this provides useful insight into the more general 
non-linear case. 
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Figure 7.5. Impact of the choice of best compromise pricing bounds on compensation 

The bold line in Figure 7.5 depicts a piece-wise linear cost curve for some variable 
xA .  The range of xA  has been divided into five sections, each section defining one cost 
range.  The observed value of is xo

A  is in the third range, in which the marginal cost is cxA3.  
For this dispatch to be optimal we would require that βx xcA A= 3 , as we have only partially 

used the capacity in the third range.  If the best compromise price is defined to be the high 
price shown in Figure 7.5 then there are three different ways of interpreting the 
compensation that could be paid:  These are: 
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•  Full Piece-Wise Linear Representation:  This is the ideal approach, whereby each of 
the cost steps would be treated as corresponding to a different variable, determining 
the compensation for each range as for a linear problem.  This produces the 
compensation corresponding to the sum of the shaded regions A and B.   

•  Full Range Linear Approximation:  Here we assume that cxA3 applies over all five 
cost ranges of xA , and ignore all bounds except for x 1

min
A  and xmax

A5 .  For the high price 
case the compensation is the high price less cxA3 multiplied by x xmax o

A A5 − .  This 

corresponds to the combined areas of A, B, and C.  For a convex cost function the 
area A+B+C will always exceed A+B, the optimal compensation.  This approach 
therefore provides more compensation than is strictly required to achieve consistency 
with the bids and offers. 

•  Local Range Linear Approximation:  This is similar to the Full Range Linear 
Approximation, but is based on the local region surrounding xo

A .  In effect, we ignore 
the feasible range below xmin

A3  and the feasible range above xmax
A3 .  Now, for the high 

price case, the compensation is the high price less cxA3 multiplied by x xmax o
A A3 − .  This 

corresponds to the area A.  For a convex cost function the area A will always be less 
than A+B, the optimal compensation.  This approach provides no compensation for 
incorrectly dispatched resources in the feasible range above xmax

A3  or below xmin
A3 , and 

consequently under compensates market participants relative to their bids and offers . 

For a low price situation, similar results are found, with the Full Piece-Wise Linear 
Representation producing compensation of E+F, while the Full Range Linear 
Approximation and the Local Range Linear Approximation produce compensations of 
E+F+G and E, respectively. 

It is apparent that the Local Range Linear Approximation places a lower bound on 
the Full Piece-Wise Linear Representation while the Full Range Linear Approximation 
places an upper bound on it.  Furthermore, since best compromise pricing determines the 
optimal price for the linear primal assumed, each method will determine the optimal prices 
corresponding to their respective representations of the primal problem, and, in each case, 
the compensation will be minimised relative to that price.  While the Full Piece-Wise 
Linear Representation is the only way to reproduce the true optimal prices and 
compensation payments114, the Full Range Linear Approximation will produce 
approximated, though commercially consistent, prices and compensation payments which 
more than account for the revenue foregone at this approximated price, ensuring that no 
                                                 

114 And hence is the only approach which will reproduce the optimal distribution of wealth. 
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market participant makes a financial loss on the margin.  The Local Range Linear 
Approximation, by contrast, provides inadequate compensation to achieve commercial 
consistency with all bids and offers.   

We can conclude, therefore, that it is possible to determine commercially 
"workable", if not necessarily "optimal", best compromise pricing formulations115 for some 
problems without fully representing the underlying primal problem, though the required 
level of compensation payments must exceed the theoretical minimum commercially 
consistent compensation level (as defined by the Full Piece-Wise Linear 
Representation)116.  This is a particularly important result in power systems, where it may 
not be possible to define the true primal problem in a single formulation.  Conversely, 
while it is possible to define a best compromise pricing formulation which produces 
compensation payments which are less than the theoretical minimum commercially 
consistent compensation level117, these compensation payments will provide inadequate 
revenue to achieve commercial consistency with the bids and offers. 

7.4.2. Summary of the Theoretical Properties of Best Compromise Pricing  
 for Piece-Wise Linear Problems 

The following theorem summarises some important properties of best compromise 
pricing for piece-wise linear problems. 

Theorem 7.2: Given any piece-wise linear primal problem we can, for any feasible 
solution to this problem, reproduce the optimal spot prices using the best 
compromise pricing formulation of (7.22) to (7.24).   

Proposition 1: For a convex primal cost function the compensation determined by this 
solution is bounded above by the compensation paid if we treat the primal variables 
as having the same cost as at the observed solution over the entire range of the 
variable, and is bounded below by the compensation paid if we treat the primal 
variables as being defined only over the range in which the costs of the observed 
solution apply.   

                                                 

115 E.g. the Full Range Linear Approximation. 

116 Ultimately we could set the market clearing prices to arbitrary levels, and set the violation prices to 
account for the discrepancies between these prices and the bids and offers. 

117 E.g. the Local Range Linear Approximation.  
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Proposition 2: The prices corresponding to these upper and lower compensation bounds 
will not correspond to the optimal prices, and neither will they reproduce the optimal 
wealth distribution.  They will, however, produce the optimal prices and 
compensation payments (and hence wealth distribution) for the simplified primal 
representations they are based on. 

Proposition 3: It is possible to determine commercially "workable", if not necessarily 
"optimal", best compromise pricing formulations without fully representing the 
underlying primal problem, though the required level of compensation payments 
must exceed the theoretical minimum commercially consistent compensation level. 

7.5. Best Compromise Pricing for Non-Linear Problems 

7.5.1. Ensuring Boundedness 

The discussion of the previous section suggests that best compromise pricing can be 
applied in the context of the OPF based pricing model of Chapter 4.  Provided we can 
determine a bounded linearisation about an observed solution we can determine best 
compromise prices.  The boundedness issue is important, because, as mentioned above, the 
pricing model of Chapter 4 is based on a linearisation of the non-linear primal problem 
about an observed solution, and loses information about more distant solutions in the 
process.  If the observed solution is not optimal, then, by ignoring non-binding primal 
constraints, and assuming all functions to be linear away from the observed solution, we 
may lack the information needed to determine prices corresponding to the true optimal 
solution.  This situation is illustrated by Figures 7.6 to 7.8.  Figure 7.6 depicts the optimal 
solution to a non-linear primal problem, the dotted lines describing the contours of the 
non-linear objective function.  The optimum solution lies at the point in the feasible region 
corresponding to the highest contour of the welfare function.  Figure 7.7 describes the 
linearised primal problem corresponding to Figure 7.6, with only the binding non-linear 
constraints considered.  It can be seen that the optimal solution, and the prices, for this 
linearisation are the same as for the original non-linear problem118.  Figure 7.8 depicts the 
                                                 

118 If there were only one binding primal constraint then the optimal solution would occur where that 
constraint touched the highest contour of the objective function.  It follows that the gradient of the 
constraint at that point must exactly match the gradient of the objective function.  Hence the 
linearised objective function will exactly coincide with the linearised constraint.  Thus the optimal 
solution to the linearised problem could occur at any point along the linearised constraint.  While it 
may appear that we would then have to constrain the linearised primal solution to equal the original 
non-linear solution, this is not necessary.  The reason for this is that a single dual solution exists at 
all these possible primal solutions.  As we are only interested in the dual solution, and will not be 
performing any sensitivity analysis, we do not need to introduce any additional primal constraints. 
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linearisation of a sub-optimal solution to the non-linear problem.  Note that the objective 
function is unbounded, as we have not included any information about the non-binding 
non-linear constraints. 

X Unconstrained
i

Constraint A
(bi di )

Optimal Constrained
l i

Constraint B
(binding)

Constraint C (not
bi di )

Sub-Optimal Solution (see  Figure
)

Feasible Region

 
Figure 7.6: A representation of a non-linear primal problem 
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Figure 7.7: The linearisation about the optimal solution of Figure 7.6. 
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Figure 7.8: A linearisation about the sub-optimal solution of Figure 7.6. 
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Thus, for sub-optimal non-linear problems, it is crucial to ensure that the linearised 
primal feasible region is bounded.  For a power system boundedness should be provided 
by the linear bounds on generating unit capacities.  Accurately approximating additional 
primal constraints will enhance the best compromise pricing solution, though, as the 
approximated primal feasible region will more closely match the true primal feasible 
region.  If implemented correctly, the inclusion of non-binding primal constraints should 
not alter the prices when the dispatch is truly optimal.  

By Theorem 7.2 the compensation payments for such an improvised feasible region 
may differ significantly from the prices corresponding to the "true" optimum, and some 
market participants may be over or under compensated relative to that ideal, depending on 
how the bounds are set.  However, the violation prices will still account for the revenue 
foregone at the approximated prices and given the approximated primal constraints, and 
will therefore provide enough compensation to ensure that no market participant makes a 
financial loss on the margin relative to this simplified representation.  The crucial issue, 
though, is whether the market participants are satisfied with the way in which the 
constraints and bounds on their resources are approximated, as this makes a big difference 
to their expected returns (see Figure 7.5).  The market participants should be satisfied, 
though, if the approximated bounds force the best compromise prices to be (more than) 
consistent with their bids and offers, as for the Full Range Linear Approximation.  The 
market participants and dispatcher may need to resolve this issue by negotiation.  
Assuming this issue can be resolved satisfactorily, and since piece-wise linearisation 
allows an arbitrarily good approximation of the primal constraints to be made, all parties 
should be able to accept the compromise prices as the best available prices, particularly if 
compensation payments are made to those dispatched in a manner inconsistent with these 
prices. 

7.5.3. Summary of the Theoretical Properties of Best Compromise Pricing  
 for Non-Linear Problems 

The results of Theorem 7.2. carry over to general non-linear problems, provided that 
if the "true" primal problem is bounded then the primal assumed for best compromise 
pricing is also bounded.  A major issue in practice, though, is whether the bounds on the 
approximated primal problem assumed for best compromise pricing purposes will result in 
compensation payments which are consistent with the actual bids and offers made by the 
market participants.  This can always be achieved (by Theorem 7.2, Proposition 3) if more 
compensation is paid out than is strictly necessary. 
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7.6. Second Order Incentives 

7.6.1. Bid and Offer Distortion 

It may be suggested that generating companies will manipulate their potential 
compensation payments by altering their declared marginal cost.  For instance, if a 
generating company expected a price of $50/MW, and had a unit which could produce at a 
marginal cost of $30/MW, then it would have an incentive to declare a marginal cost for 
this unit lower than $30/MW, at $10/MW say, since it believes it should be dispatched.  If 
the dispatcher fails to dispatch this unit correctly, and if the expected price transpires, then 
the company will receive $40/MW compensation, rather than the "natural" $20/MW, on 
each unit it could have produced.  On the other hand, there will be some probability that 
the generating unit would be dispatched at a price as low as $20/MW, earning no 
compensation while making a loss of $10/MW.  In any case, this "gaming", if judged 
correctly, does not distort the dispatch and strengthens incentives for good dispatch119. 

7.6.2. Incentives of the Dispatcher 

A dispatcher who is also the grid owner may face second order incentives.  For 
instance, if a transmission line is only partially loaded, but the optimal dispatch would 
have it fully loaded, then the prices in the sending and receiving regions will be 
inconsistent relative to one another.  This is precisely the situation in Figure 7.4.  To avoid 
paying compensation to other parties the dispatcher might claim that, due, say, to 
maintenance, the line was constrained, with the constraint shadow price accounting fully 
for the price discrepancy.  This is an undesirable situation, however, as the network earns 
rent which it should not have done, and while the generating companies and consumers are 
reimbursed in a manner consistent with a constrained link, these financial transactions do 
not correspond to the correct primal dispatch or pricing solution, disadvantaging some 
players. 

While detailed auditing of the pricing process may limit such price manipulations, 
the complexity of the power system and the uncertainties involved in dispatching may still 
leave scope for manipulation.    

                                                 

119 Overall, the incentives provided by the compensation regime would seem to moderate those from 
the market. 
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It might seem appropriate to solve the best compromise pricing model as is, but to 
not actually pay the resulting transmission compensation to the grid owner.  But then the 
dispatcher ends up with the money, so nothing is achieved if the dispatcher also owns the 
network.  Another possible solution might involve removing the terms relating to 
transmission lines from the best compromise pricing model objective function, while 
leaving the constraints - or a representative sample of them - unchanged.  This fails to 
address the issue, though, because now we are minimising the compensation to all parties 
other than the dispatcher, which is precisely the second order effect we wish to avoid.  In 
particular, the transmission violation prices in the constraint set will be treated as 
congestion rentals (implying that the lines are constrained), and used as much as possible 
to explain price variations rather than using the violation prices corresponding to the 
capacity owned by the market participants.   

It might seem, therefore, that we must remove all violation price terms and bounds 
relating to transmission from the best compromise pricing formulation.  This effectively 
implies that all lines are uncongested, producing no line rentals, even when the line flows 
are truly constrained.  While this result may appear inconsistent with the aim of dispatch 
based pricing, this is not necessarily the case.  For example, to simplify its pricing regime 
the grid owner may offer market participants the option to pay a fixed fee (or 
compensation levy) for network usage, and then charge them as if the network is 
unconstrained.  By setting the transmission violation prices to zero and setting the lower 
and upper transmission flow bounds to negative and positive infinity, respectively, the best 
compromise pricing problem will determine the market clearing prices consistent with a 
notional unconstrained grid, and the compensation payments required to resolve any 
inconsistency between these market clearing prices and the offers and bids.  This approach 
prevents the dispatcher from claiming that a sub-optimal dispatch is constrained.   

It is not necessary to resort to a notional unconstrained grid, though, if we recognize 
that second order incentives cannot be addressed within the standard best compromise 
pricing model, as it is a "first order" approach.  Indeed, all violation prices and bounds 
must be modelled to reproduce consistent prices.  While this might suggest that we must 
place the role of dispatching the system in the hands of a party which plays no role in the 
market, an equivalent solution, and one which we explore further, is to use capacity rights 
(Read and Sell, 1989, Hogan, 1992). 

If the grid owner/dispatcher issues capacity rights on the entire capacity of the 
transmission line in question, and all are sold, then, given a sub-optimal dispatch, the 
dispatcher has the choice: 

•  Declare the dispatch to be sub-optimal, and pay compensation; or 
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•  Declare the line to be constrained, collecting the rent on the actual flow, while 
paying it out to the right holders on the entire capacity. 

For example, if the dispatcher owns the transmission line in Figure 7.4 it would be 
profitable, in the absence of capacity rights, to claim that the line has a capacity of only 
800MW, setting the price in region B to $40/MW, and earn a rent of $20/MW on that 
capacity, or $16,000 in total.  By claiming that the line has been dispatched sub-optimally, 
though, the dispatcher would earn $8,000 rent (ηP =$10/MW), but would incur an 

opportunity cost of $2000 on the unused capacity, and would have to make a payment of 
$500 to the owners of generating unit 3 (to cover its $500 loss from generating 50MW at a 
price of $30/MW), giving a net return of $7,500.  Hence more rent is earned by claiming 
the line to be constrained. 

The situation is different however, if all the 1000MW capacity of the line has been 
sold as a capacity right.  Now the dispatcher collects $16,000 rent on the line by claiming 
it to be constrained, but must pay $20/MW times 1000MW to the right holder, meaning 
that the dispatcher loses $4000.  This is more than the $2500 ($2000 on unused capacity 
rights, $500 to the owners of generating unit 3) that the dispatcher would have to pay by 
admitting the dispatch to be sub-optimal.   

It follows that a dispatcher who has issued capacity rights will attempt to 
simultaneously minimise the compensation payments and the capacity right payout on 
capacity in excess of the claimed maximum line flow.  Mathematically, this example is 
consistent with replacing the term: 

 ( )∑
∈

+ −
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omax
x xx

A
AAAυ   

in (7.22), which we here assume to relate to transmission line upper bounds, with (7.40).  

 ( ) ( )( )∑
∈

+ −+−
NDI

o
x CAPxxCAP

A
AAAAA

rightcapacity υ   (7.40) 

That is, the dispatcher wishes to determine values not just for υ xA
+ , but also for xmax

A , 
which the dispatcher surreptitiously treats as a variable, which we call CAPA , so as to 

minimise the sum of the compensation payments on the sub-optimal line flows (the first 
term) and the capacity right payouts when capacity rights exceed the value of CAPA 120.  
The term xA

capacity right  is the total capacity right for the line corresponding to variable A .  If 
we assume that ( )oxCAP AA −  must always be non-negative then the dispatcher will always 

                                                 

120 We assume that capacity rights are not a function of the, possibly distorted, line capacities claimed 
by the dispatcher. 
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want ( )AA CAPx −rightcapacity  to be negative, as this will decrease the total payout.  Hence the 
dispatcher will never set CAPA  at a level less than xA

capacity right .  Also, CAPA  cannot exceed 
xmax
A , i.e.: 

 maxxCAPx AAA ≤≤rightcapacity   (7.41) 

The ACAP  terms cancel from (7.40) to give (7.42). 
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Thus, while a dispatcher might be able to manipulate the apparent capacities of 
transmission lines, capacity right holders are protected from this, being compensated as if 
the total capacity right is the line capacity.  Also the dispatcher will always have incentives 
to honour those capacity rights, treating the line as if it has at least that capacity. 

7.6.3 Industry Capacity Rights 

While capacity rights address second order incentives if fully sold, a complication 
arises if some are not sold, as the dispatcher still faces second order incentives for that 
capacity from which it earns a rent. 

A potential remedy to this problem is to introduce the concept of an Industry 
Capacity Right (ICR).  These rights are defined to be all unsold conventional capacity 
rights, and would be administered by the industry, excluding the network owner.  Since no 
individual market player has purchased these excess rights we might assume either that 
some of the market players do not want to deal with the complexity of determining optimal 
rights, preferring a more conventional share-holding instead, or that these rights 
correspond to the capacity requirements of the system as a whole which cannot be 
attributed to the requirements of any individual user (i.e., they are an artefact of the non-
linearity).   

The rents from the ICRs could be dispersed among the owners in proportion to their 
share holdings.  Since any extra rents due to price manipulations by the dispatcher go to 
the ICR owners then the incentive to manipulate prices is removed.  If the rents on ICRs 
were to be negative, due, say, to non-linear effects, then the ICR owners would have to pay 
the dispatcher.  The ICR owners will want to make sure that the dispatcher does not 
manipulate the prices so as to try and unfairly maximise the magnitude of this rent.  To 
avoid this the ICR owners could determine the expected annual value of a negative valued 
ICR, based purely on first order incentives, and pay this amount to the dispatcher.  No 
further payment is made to the dispatcher when constraints are binding, giving the 
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dispatcher an incentive to ensure that the magnitude of the actual negative rents do not 
exceed the amount payed by the ICR owners. 

In effect, there is no advantage for the dispatcher in manipulating the rents.  The ICR 
holders can expect the actual rents to exactly match the expect rent if uncertainty is 
modelled perfectly and the dispatcher obeys only the first order incentives.  In the same 
manner as for conventional capacity rights, any additional (positive or negative) rents 
received by the ICR owners as a result of price manipulations might be expected to at least 
correspond to the cost of compensation payments avoided by the dispatcher.  Given the 
potential arbitrariness of compensation payments for some best compromise pricing 
implementations for non-linear problems it is not clear whether this last result will always 
be true. 

7.7. Conclusions 

Past approaches to pricing for economic inconsistencies in dispatches have taken 
little account of the economic costs of these inconsistencies, instead relying on arbitrary 
remedies.  In this chapter, we have presented a best compromise pricing approach which 
accounts for the economic costs of dispatch inconsistencies in a way which ensures that 
prices can be made consistent with the bids and offers of market participants. 

Best compromise pricing is based on a goal programming formulation which 
minimises the (possibly notional) payment that need be made to recover the extra costs 
arising from genuinely sub-optimal dispatches, or dispatches which appear sub-optimal 
due to inconsistencies between the assumptions/formulation of dispatch based pricing and 
reality.  Applying this goal programming approach to a truly linear primal problem would 
give the correct optimal prices and the correct compensation payments.  While the 
approximations involved with non-linear power system models may reduce the accuracy of 
these results, the goal programming approach can still produce prices which are 
"workable" in a commercial sense.  The prices and compensation will have the following 
favourable properties: 

•  All prices will be consistent with the (approximated) power system model. 

•  No one buying or selling power will make a loss on the transaction that occurs in the 
sub-optimal solution (relative to the approximated model).  

For realistic dispatch problems we may also find that: 

•  The observed prices will not necessarily match the optimal prices.   
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•  Not all of the welfare loss will necessarily be recovered by compensation. 

•  The required compensation level may exceed the theoretical minimum level due to 
approximations in modelling the primal. 

If a dispatcher is required to pay compensation, then this might be collected via some 
annual fee.  In minimising the payouts from this fund, an incentive is created for the 
dispatcher to efficiently operate the system.  In situations where the dispatcher is the grid 
owner there is potential for the dispatcher to make a trade-off between claiming that a 
dispatch is sub-optimal and claiming that it is more tightly constrained than is really the 
case.  This situation can lead to the dispatcher making excessive revenues at the expensive 
of generating companies and consumers.  Solutions to this problem might include forcing 
the dispatcher to price according to a notional unconstrained network or to require that the 
dispatcher does not own the network (or any other capacity).  As an alternative solution, 
we have proposed that all the capacity rights on a line be held by either individual network 
users, or by a grouping of network users.  Market participants have an incentive to acquire 
such capacity rights even when dispatches are always optimal.  Capacity rights effectively 
transfer excess rents from the dispatcher back to the market participants.  As a 
consequence of these capacity rights the dispatcher's profits are maximised by admitting 
that the dispatch is sub-optimal in those situations where it truly is. 

Generating companies and consumers may have incentives to manipulate their bids 
and offers so as to get greater compensation than they strictly need if they are mis-
dispatched.  While this issue requires further analysis, it is apparent that for such 
manipulation to be worthwhile an accurate expectation of the optimal dispatch is required, 
and the manipulations must be done in a way which should have the manipulator 
dispatched according to that expectation, thus effectively improving market efficiency. 
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Chapter 8 

Extensions to Spot Pricing Theory:  
Inter-Temporal Constraints 

8.1. Introduction 

Thus far we have assumed that the dispatch optimisation is based purely on a 
(possibly notional) OPF, with all costs and constraints explicitly represented, and with the 
dispatcher able to change the dispatch variables in infinitesimal steps, incurring a cost 
proportional to that change.  As a result we have been able to derive optimal marginal cost 
based prices.  In applying this assumption, we have ignored a number of important aspects 
of power system operation, including121: 

•  Inter-temporal constraints 

 These jointly constrain OPF variables in two or more dispatch periods.  In many 
situations the value of a variable in one period becomes a bound on the equivalent 
variable in another period.  Precisely modelling these constraints may create a very 
large optimisation problem. 

•  Stochastic constraints 

 These are like inter-temporal constraints but jointly constrain variables in two or 
more different equilibrium states of the power system.  These different states may 
arise stochastically during the dispatch period.  Modelling these constraints precisely 
may also create a large optimisation problem. 

                                                 

121 In addition to this list we have ignored variations of the dispatch within the dispatch period, treating 
the dispatch as a "snapshot".  This issue is of lesser importance than those discussed here and is 
referred to in Chapter 4.  We have also ignored the impact of harmonics, as, in New Zealand, these 
are a more significant issue in local distribution networks than in the national grid.  Finally, we 
assume the system is always in equilibrium, ignoring transient periods lasting of an order of a 
second between equilibrium states. 
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•  Integer dispatch variables 

 These variables cannot be varied in infinitesimal steps, and hence are inconsistent 
with an analysis based on incremental cost variations. 

Inter-temporal and inter-state constraints can, in theory, be handled within the 
framework of an OPF, as discussed below.  The inclusion of these constraints is limited in 
practice partly due to the computational burden they impose, but also due to uncertainty 
about the nature of possible future states (particularly for inter-temporal constraints) and a 
lack of reliable data upon which to model the system (particularly for stochastic 
constraints).  Integer variables can not be accurately represented in a conventional OPF, 
and more importantly, we cannot form a dual to an OPF containing integer variables. 

The dispatch based pricing philosophy of Chapter 3 states that the dispatcher must 
announce prices which provide a consistent economic explanation of the observed 
dispatch.  Thus we suggest that the dispatcher should model the phenomena described 
above in the most economically consistent manner possible within the theoretical and 
technical limitations imposed.  The best compromise pricing approach of Chapter 7 should 
be used to account for any remaining discrepancies. 

In this and the following two chapters we discuss the nature of inter-temporal 
constraints, stochastic constraints and integer variables, in turn.  We do not attempt to 
describe a comprehensive framework for addressing these issues, but in each case we 
suggest, using illustrative examples, how the dispatch based pricing philosophy might be 
applied.  We consider the ideas described in these chapters to be promising avenues for 
further research.  We begin in this chapter by considering inter-temporal constraints. 

Bacher (1992) observes that the complexity and high dimensionality of power 
systems has resulted in the dispatch process being represented by a series of hierarchical 
models, each valid over a different time frame.  Variable outputs of higher level models 
become fixed inputs for lower level models.  Bacher observes that while this decoupling 
results in some loss of mathematical optimality, practical experience indicates that the 
results are probably near the global optimum.  Bacher defines two basic scheduling 
categories.  The first category deals with time frames of the order of 1 hour to 10 years and 
uses simplified operational constraints.  This time frame includes the unit commitment 
problem (Baldick, 1995), which determines which generating units are to be committed to 
the dispatch, but not their actual outputs.  The second category involves time frames of the 
order of 5 minutes to 1 hour with the dynamics of the power system being modelled in 
detail. 
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The OPF problem is included in the shorter time frame.  The OPF is solved to 
determine the load flow for a given point in time, but its formulation is based on a solution 
to the longer term unit commitment problem.  It is, therefore, this longer term problem 
which must be taken into account when modelling inter-temporal effects.  In particular, it 
is necessary to account for the fact that some generating units may need to operate 
unprofitably in one period so that they can be in position to generate profitably in later 
periods. 

Some of the key inter-temporal links which may exist in a power system are: 

•  Start up and shut down constraints which require that a minimum time must elapse 
after a generating unit is committed to run before it can produce any power or before 
it can be restarted after it is shut down . 

•  Ramping constraints which limit the rate of change of generation for each generating 
unit. 

•  Energy constrained dispatch.  This is where a set amount of energy must be 
produced, or a set amount of fuel consumed, within a given interval, but not 
necessarily at a constant rate.  Thus the dispatcher should vary the amount produced 
across time so as to maximise benefit. 

•  Water storage constraints.  These constraints limit the storage of water in a dam.  The 
optimal release of water in one period must take account of expected inflows and 
expected values of power in future periods.   

•  Hydrological constraints in hydro power river chains.  These constraints link the 
release of water from one dam with the arrival of that water at another dam at a later 
time.  These constraints effectively represent the flow of fuel to the generating units.   

In the following section we review the literature on inter-temporal constraints.  To 
provide a reference for later discussion we subsequently present both a ramping constraint 
problem and an energy constrained dispatch problem, determining the economically 
optimal solution in each case.  We then consider a number of alternative approaches that 
might be used to account for these constraints in the dispatch process.   

8.2. Review of Pricing Literature on Inter-Temporal Constraints 

Caramanis, Bohn, and Schweppe (1982), in the original exposition of the MIT 
model, presented a multi-period pricing model.  This model was based on a primal 
problem which optimised the system over some time horizon given a set of generic 
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exogenous random variables which might represent economic factors, weather, and so 
forth.  They derive the optimal spot prices for this problem, these being analogous to those 
we derive, but are based on the expected impact of marginal changes in the primal 
variables rather than a deterministic impact.  The key impact of inter-temporal constraints 
is that the value of altering a primal variable value is not just its value in that period, but in 
all future periods122.  Caramanis et al. presented this work to highlight the potential of spot 
pricing to provide good economic incentives, while acknowledging that implementing this 
model is not trivial.  Indeed, Littlechild (1991) argues that this formulation suffers from the 
so called "curse of dimensionality", the random variates causing the problem size to 
explode the further into the future the model is projected. 

Due to the complexity involved, therefore, inter-temporal constraints are ignored in 
Trans Power's pricing model implementation, as well as in the implementation of Hogan 
(1991, 1992) and the MIT model based WRATES program of Caramanis, Roukos, and 
Schweppe (1989).  Hogan, however, suggests that the ex post approach can implicitly 
account for the cost of these constraints on the dispatch because the actual dispatch can be 
observed.  The objective function costs must be modified to represent the actual system 
state, as well as the costs of the optimal future states.  Read (1979) describes how hydro 
river chain water values can be used in this manner.  These water values are the shadow 
price of water storage constraints123 and are based on target water levels and/or expected 
future prices.  If accurate, these water values provide the dispatcher with the correct 
incentives to use the water in an efficient manner.  This approach is explored further 
below. 

8.3. Examples of Inter-temporal Constraints 

8.3.1. A Ramping Constraint 

We consider a deterministic, two period, single node, problem.  Generating unit 1 
has a capacity of 120MW and a marginal cost of $5/MW, generating unit 2 has a capacity 
of 100MW and a marginal cost of $20/MW, and generating unit 3 has a capacity of 60MW 

                                                 

122 This is discussed further below. 

123 These should not be confused with the long term water values specified for major storage 
reservoirs, though, and can not generally be determined from those by simply pro-rating, for 
instance. 
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and a marginal cost of $40/MW.  Generating unit 2 is the only unit subject to an inter-
temporal constraint, and can ramp up at a rate of 50MW per period124.  That is: 

 PG2
1 100≤   (8.1) 

 PG2
2 100≤   (8.2) 

 P PG G2
2

2
1 50≤ +   (8.3) 

Here the superscript refers to the time period in which the term is defined.   Demand 
is assumed to be 110MW in the first period and 250MW in the second.  If no inter-
temporal constraint existed for generating unit 2 then the optimal dispatch would be 
PG1

1 =110MW while PG2
1 = PG3

1 =0 and PG1
2 =120MW, PG2

2 100= MW, and PG3
2 =30MW.  

The optimal prices are βP
1 =$5/MW and βP

2 =$40/MW.   

We now consider the situation where the ramping constraint is imposed.  The price 
in the first period must still be βP

1 =$5/MW because a higher price would cause generation 
to exceed demand, while demand could not be satisfied at a lower price, even if generating 
unit i were to produce with full output.  It follows that generating unit 2 will make a loss of 
βP Pc1

2− = −$15/MW on each unit generated in period 1.  Generating unit 2 will not 
operate in either period if βP Pc2

2< =$20/MW.  If generating unit 2 is to operate at all in 
period 1 then this loss must be offset in period 2, requiring βP Pc2

2− >$15/MW, or 
βP

2 >$35/MW.  If $20/MW≤ ≤βP
2 $35/MW then it will only be worthwhile for generating 

unit 2 to operate in period 2, and not in period 1.   

In this case, to meet the demand of 250MW in period 2 at least cost we again require 
PG1

2 =120MW, PG2
2 100= MW, and PG3

2 =30MW, implying that βP
2 =$40/MW.  The 

ramping constraint requires that PG2
1 50= MW so PG1

1 =60MW and PG3
1 =0.  The owner of 

generating unit 2 makes a marginal profit of $20/MW in period 2 which offsets the loss of 
$15/MW in period 1.  

It is informative to consider the dual constraints corresponding to this ramping 
constraint.  Re-stating (8.1) to (8.3) in canonical form, and introducing multipliers, gives: 

                                                 

124 Here we ignore the fact that the generating unit would in reality have to ramp up throughout the first 
period.  While the literature on this topic generally makes this assumption, it is important to note 
that in practice we might have to set the observed generation levels to be the average generation 
over the dispatch period, and that the manner in which this done may influence the marginal impact 
of average generation in one period on the feasible average generation in another.  
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If we assume, for simplicity, that there is no lower bound on generation in either 
period, then by applying the methodology of Chapter 4, we can conclude that the prices 
must satisfy the relationships: 

 β υ τP P P Pc1
2 2

1
2= + −+   (8.7) 

 β υ τP P P Pc2
2 2

2
2= + ++   (8.8) 

 υ υ τP P P2
1

2
2

2 0+ + ≥, ,   (8.9) 

We have βP
1 =$5/MW, βP

2 =$40/MW, cP2 =$20/MW, and, if generating unit 2 is not 
fully loaded in the first period, υP2

1+ =$0/MW.  It follows that τ P2 =$15/MW and 
υP2

2+ =$5/MW.  The ramping constraint multiplier value reflects the fact that an increase in 
the right hand side of (8.6) would reduce the amount by which unit 2 could ramp up to 
only 49MW, and so it would have to generate one more unit in period one, incurring an 
additional net loss of $15/MW.  It follows that each unit of ramping capacity has a value of 
$15/MW.  The value of generation capacity in period 2 equals $5/MW because if one more 
unit of capacity were available unit 2 could generate 51MW in period 1, and 101MW in 
period 2, with a net increase in profit of $5/MW.  Thus the incentives are clearly to 
generate as much as possible in period 2, and accept the consequential loss in period 1, 
rather than to minimise output in period 1.  This follows from the fact that the per unit 
profit in period 2 exceeds the magnitude of the per unit loss in period 1. 

The total net profit made by the owner of unit 2 is: 
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The rents earned on the constraints are: 

 
100 50 100 5 50 15

500 750
1250

2
2

2υ τP P
+ + = × + ×

= +
= $

 

As usual the optimal prices which should be paid to the owner of unit 2 account for 
both the direct operational costs and the rents.  It is also apparent from (8.7) that τ P2  is just 
the optimal unit transfer of profits from period 2 to compensate for the marginal financial 
loss in period 1.  
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Note that if demand in period 2 had been between 120MW and 220MW then 
generating unit 2 would be the marginal unit in that period, producing between 0MW and 
100MW.  The period 2 price would be $20/MW for demand up to 170/MW as 
PG2

2 ≤50MW, i.e. generating unit 2 can satisfy demand in period 2 by ramping up from a 

zero generation level in period 1, and since it produces nothing in period 1 there is no loss 
to recover.  For demand between 170MW and 220MW we have 50MW< ≤PG2

2 100MW 

and the period 2 price must be $35/MW, i.e. generating unit 2 must produce power in 
period 1 to allow it to contribute in period 2125.  In the first case generating unit 2 would 
just break even overall, while in the second case it just breaks even on the first 50MW of 
generation but makes a marginal profit of $15/MW on any additional generation.  This 
additional profit would not be earned if the ramping constraint had not been imposed, as 
generating unit 2 would not operate in period 1 and would be marginal in period 2, and 
hence a second order incentive may exist for the owner of generating unit 2 to exaggerate 
the form of the ramping constraint so as to maximise the additional profit in period 2.  

8.3.2. An Energy Constrained Dispatch 

We now consider an energy constrained dispatch where the constraint requires that 
150MW be generated in total over the two periods by generating unit 2.  In this case (8.6) 
would be replaced by: 

 P PG G2
1

2
2 150+ =   (8.10) 

The optimal solution would again have βP
1 =$5/MW, βP

2 =$40/MW, PG1
1 =50MW 

and PG2
2 100= MW.  The dual pricing constraints are now given by: 

 β υ ξP P P Pc1
2 2

1
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125 A situation might arise where generating unit 2 is marginal in both periods.  For example, if demand 
in period 1 had been only 40MW while demand in period 2 had been 200MW then generating unit 
2 could produce 40MW in period 1, being the marginal source of power, while in period 2 
generating unit 1 could produce 120MW and generating unit 2 produce 90MW.  The price in both 
regions can now take any value which ensures that generating unit 2's marginal profit in period 2 
offsets the marginal cost in period 1.  At one extreme, if generating unit 1 is to stay out of the 
dispatch in period 1, the price can be $5/MW in period 1 (marginal loss=$15/MW) and $35/MW in 
period 2 (marginal profit =$15/MW), while at the other extreme, if generating unit 3 is to stay out of 
the dispatch in period 2, the period 1 price can be $0 (marginal loss=$20/MW) while the period 2 
price can be $40/MW (marginal profit=$20/MW). 
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Where ξ P2  is the multiplier on the energy constraint and is unconstrained in sign.  Given 
that cP2 =$20/MW and υP2

1+ =$0/MW (since generating unit 2 is not fully loaded in the first 
period) (8.11) requires that ξ P2 = -$15/MW, reflecting the fact that an increase in the right 
hand side of (8.10) can only be meet by generating at a loss in period 1.  The capacity 
multiplier in the second period must be υP2

2+ =  $35/MW, as one more unit of capacity 
would allow production in period 2 to increase (with a profit of $20/MW) while generation 
in period 1 could decrease (saving $15/MW). 

8.4. Offer Price Modification 

Rather than explicitly informing the dispatcher that a ramping constraint exists, the 
company which owns generating unit 2 may instead modify this units offer in a manner 
which reflects the impact of the constraint.  If this company expects βP

2 =$40/MW then it 
will be prepared to make a loss of up to $20/MW in the first period (provided 
βP

1 ≥$0/MW) if this allows it to take advantage of the profit to be made in period 2.  
However, the maximum amount upon which it should be prepared to make a loss in period 
1 is 50MW, as any generation above this does not increase units 2 generation potential in 
period 2.  Hence the following offer might be issued for generating unit 2126:  

Period 1127  

  cP2 0= $ / MW   for MWPG2
1 50≤  

Period 2  

  cP2 2= $ 0 MW /   for MWPG2
2 100≤  

If the expected prices eventuate then generating unit 2 is guaranteed to recover the 
losses it incurs in period 1.  A complexity with this approach is that if the expected prices 
eventuate but the dispatcher determines, incorrectly, that PG2

1  should be 40MW then, if 

physically dispatched at this level, the ramping constraint would make it impossible for an 
output of 100MW to be achieved in period 2.  In practice, this could be avoided if the 
generating company is forewarned of the proposed dispatch, and has the opportunity to 
insist on operating at 50MW in the first period.  A more extreme version of this problem 

                                                 

126 This offer would also satisfy the energy constraint of (8.10). 

127 The zero bid price in period 1 is purely coincidental.  This value is just the expected profit in period 
2 less the marginal cost of generating unit 2.  If the expected profit were larger then the period 1 
offer price would exceed zero. 



Chapter 8: Extensions to Spot Pricing Theory: Inter-Temporal Constraints 155 

 

occurs if the generating company's expectation of the price in period 1 was inaccurate, and 
the period 1 price was actually less than zero.  In this case the company would prefer that 
unit 2 was not dispatched in either period, but may be forced to insist on being dispatched 
in period 1 so as to meet its commitments in period 2. 

This example is rather simplistic, as we have ignored the initial state of generating 
unit 2 in period 2, and the ramping constraint between period 0 and period 1, and we have 
imposed no end conditions.  In practice generating unit 2 will have an initial, period 0, 
generation level, while its owner will have an expectation of how prices will develop over 
the coming periods (these expectations being a function of how unit 2 is dispatched) and 
may want unit 2 to be operating at a particular level at the end of the horizon.  Given this 
information the owner of generating unit 2 must determine offer price and generation 
capacity combinations for the time horizon which reflect the impact of the ramping 
constraint.  While this problem may appear complex, it is similar in form to the problem of 
determining water values in hydro systems (Read, 1979) and can be solved using dynamic 
programming techniques for example.  We note that the same problem must be solved in a 
centralised dispatch, but for all generating units simultaneously. 

8.5. Quantity Targeting 

A quantity targeting approach would be a variant of offer modification which places 
the primary focus on modifying the offer quantity rather than the offer price.  For example, 
the owner of generating unit 2 could simply determine the quantities it wants to generate 
and fix its offer quantities at these levels, giving the dispatcher no choice in how it should 
be dispatched.  Thus, given the same price expectations as assumed above, the owner of 
generating unit 2 could make an offer of PG2

1 50= MW  and PG2
2 100= MW.  Given such an 

offer the dispatcher could justifiably assign a shadow price, unconstrained in sign, to 
generating unit 2's capacity in each period.  Applying the conventions of Chapter 4, a 
positive shadow price corresponds to the marginal profit earned by generating unit 2 in 
that period, while a negative shadow price describes the marginal loss.  Provided that these 
shadow prices do not appear in the dispatch based pricing objective function, these shadow 
prices can vary freely so as to explain any difference between the spot prices and the offer 
prices.  In effect, the pricing model will never consider generating unit 2's offer price in 
determining the spot prices.  Ultimately then, by issuing this offer, the owner of generating 
unit 2 is signalling to the dispatcher that it accepts all the financial risk associated with this 
offer. 
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8.6. Explicit Notification of Ramping Constraint 

Another approach to this problem would be for the owner of generating unit 2 to 
inform the dispatcher, via its offer, of the requirement that it be operated in a manner 
consistent with its ramping constraint.  The dispatcher would then have the responsibility 
to dispatch the generating unit consistent with this constraint, as well as to determine 
prices which explain the economics of that dispatch.   

 Period 1 
(βP

1 =$5/MW) 
Period 2 

(βP
1 =$40/MW) 

 

Multiplier: 
(τ P2 ) 

($/MW) 

Marginal 
Profit128: 

β τP P Pc1
2 2+ −
 

($/MW) 

Dispatch 
Error 
(MW) 

Marginal 
Profit: 

β τP P Pc2
2 2− −
 

($/MW) 

Dispatch 
Error 
(MW) 

Total 
Compensation 

Payment 
Required 

($) 

0� -15� 0129 
50� 

20� -50 
0� 

1000 
750� 

5 -10 0 
50 

15 -50 
0 

750 
5000 

10� -5� 0 
50 

10� -50 
0 

500 
250 

15 0 0 
0 

5 -50 
0 

750 
0 

20 +5 -100 
-50 

0� 0 
0 

1000 
250 

Table 8.1: Impact of compensation on the shadow price of a ramping constraint 

While a multiple period pricing model would be desirable in this case, the dispatcher 
could choose to simply estimate the inter-temporal shadow price, and then apply best 
compromise pricing to determine any compensation that might need to be made. 

Table 8.1 demonstrates how a dispatcher might go about determining both the 
dispatch and the ramping constraint multiplier130 for our example when the prices are 
                                                 

128 Where cP2 =$20/MW. 

129 The first entry in each cell relates to a dispatch of 0MW in the first period and 50MW in the second, 
while the second entry relates to 50MW in the first period and 100MW in the second.  The stated 
values are the observed output for that period less the optimal output. 

130 An analogous method could be applied if we had an energy constraint instead of a ramping 
constraint. 
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given131.  In Table 8.1 we consider two extreme dispatches, one with 0MW produced in the 
first period and 50MW in the second, the other with 50MW produced in the first period 
and 100MW in the second.  The dispatcher varies the multiplier value so as to minimise 
the compensation payment that would need to be made.  It is apparent that a dispatch of 
50MW in the first period and 100MW in the second, combined with a multiplier value of 
$15/MW, minimises the compensation required.   

It is no coincidence that this solution is optimal.  Compensation is minimised for this 
solution as it is the only solution for which the power prices can cover both the generating 
costs in both periods as well as the value of the inter-temporal constraint.  This example 
demonstrates how the best compromise pricing approach can produce consistent prices, 
even for a non-optimal inter-temporal dispatch, while the compensation payments 
encourage the dispatcher to try and find the optimal dispatch. 

While a full multi-period best compromise pricing approach would be the idea way 
to implement this approach, it does not avoid the complexity of modelling inter-temporal 
constraints.  While abstracting away from this complexity may make it easier for the 
dispatcher to determine prices and compensation payments, the need to maintain 
consistency with the bids and offers means that compensation may not be set to its 
minimum level.  The possibility of paying more compensation than is strictly required 
should give the dispatcher an incentive to maximise the accuracy with which inter-
temporal effects are modelled132. 

8.7. Conclusions 

Inter-temporal constraints have a major impact on power systems, but the complexity 
involved in modelling them has limited the extent to which they have been represented in 
pricing models.  We have presented two approaches which might be applied to inter-
temporal problems when a detailed multi-period representation is considered too complex.  
One approach requires that generating companies modify their offers so as to account for 
the inter-temporal effect.  For example, a generating unit owner faced with ramping 
                                                 

131 If the prices are not given, which will be the typical case, then the dimensions of Table 8.1 could be 
increased to allow a range of pricing solutions to be tried.  Ideally, a two period best compromise 
pricing formulation would be used, though this is equivalent to solving a multi-period dispatch 
problem. 

132 In practice, the levy placed on the market to collect the revenue required for compensation 
payments should reflect the accuracy with which the market expects the complexities of power 
systems to be modelled.  The dispatcher could (potentially) be held liable for the additional 
compensation required if the expected level of modelling accuracy is not achieved. 
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constraints might offer to operate below this units marginal cost in some periods if this 
allows this unit to achieve maximum output in profitable periods which follow.  While this 
may lead to some loss in coordination efficiency, making it necessary to check the 
consistency of the pre-dispatch, the onus is on generating companies to accurately predict 
the evolution of the dispatch and to behave according to that prediction, thus reinforcing 
the incentive for efficient operation.  

A second approach is for the generating companies to simply dictate to the 
dispatcher the levels at which they wish to generate in each period.  In this situation the 
generating companies bear all the risk, as the dispatcher can activate a shadow price, 
unconstrained in sign, on these constraints, effectively removing the relevant generating 
units from the pricing problem.  This is analogous to the treatment of voltages and reactive 
power injections which have not been optimised, as discussed in Chapters 3 and 4. 

A further approach is for generating companies to explicitly inform the dispatcher of 
the ramping constraint, and make it the dispatcher's responsibility to determine generation 
levels, and the corresponding prices, over time.  This approach leaves the issue of how the 
dispatcher determines the dispatch open, though the compensation payments which would 
be implied if best compromise pricing were to be used encourages the dispatcher to find 
solutions which are as near to optimal as can be found.  The ability of best compromise 
pricing to find the minimum the compensation payment required may be limited, though, 
by the accuracy with which inter-temporal constraints are modelled.   

What ever approach is used, effectively the same judgements must be made, and it is 
moot whether it is more efficient or effective for these to be made by a central dispatcher 
or by many independent market participants. 

We have shown that imposing a ramping constraint can increase the profit earned 
from a constrained generating unit, and hence that a second order incentive may exist for 
generating companies to exaggerate the form of ramping constraint so as to maximise their 
profits.  The offer modification approach may go some way to limiting this effect, because 
in making such modifications generating companies will consider their actual ramping 
limitations.  It is not clear whether or not this advantage outweighs the cost of the 
coordination inefficiencies that this approach may create. 
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Chapter 9 
 

Extensions to Spot Pricing Theory: Stochasticity 

9.1. Introduction 

The previous chapter assumed perfect foresight, but power systems are operated 
under uncertainty, and the dispatcher must prepare for a variety of situations, incurring 
costs by doing so.  Some uncertain aspects of short-run power system operation are: 

•  future demand, 

•  equipment failure, and 

•  hydrological inflows. 

In this chapter we discuss the use of dispatch based pricing to account for stochastic 
aspects of the dispatch.  In particular, we focus on the stochastic multiple contingency 
problem, a problem which, in the time frame of the dispatch, is the most significant, and 
potentially expensive, source of uncertainty in the New Zealand power system133.   

Our analysis of reserve pricing in Chapter 6 assumed reserve must be held to satisfy 
a target reserve requirement, while ignoring the optimisation of that requirement and the 
possibility of that reserve actually being required.  In effect we assumed that disruptions 
would not occur often enough that the costs incurred during disruptions would have any 
significant effect on the choice of reserve options.  By ignoring the possibility of a 
contingency actually occurring, the reserve sources with the lowest “stand-by” cost will 
always be the most favoured, and cheap unreliable generating units will more readily be 
base loaded than more expensive but more reliable generating units.  However, actually 
calling upon such sources may be more expensive than calling on other sources with 
higher stand-by costs.  If we are to correctly trade-off the usage costs and stand-by costs of 

                                                 

133 The stochastic reserve problem we refer to relates to equipment failure, rather than to the problem 
of stochastic load forecasting in situations where capacity may be inadequate to meet demand. 
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various reserve sources, so that the dispatch decision can be made optimally, we must 
consider a range of possible random disruptions in any given dispatch period, and the 
available response options.   

We explore these issues after reviewing the stochastic reserve problem and the 
literature on pricing for reserve under uncertainty.  The relationship between dispatch 
based pricing and the stochastic reserve problem is then discussed, with an "Optimal 
Reserve Targeting" model, based on a model described by Caramanis et al. (1987), being 
proposed as a reasonable compromise between detail and practicality.  The dual of this 
scheduling model is analysed, and we demonstrate that the common assumption that 
energy prices rise during contingencies is not necessarily true.  Finally, we briefly discuss 
the implications of the longer term effects stemming from a contingency. 

9.2. Stochastic Reserve Scheduling 

The stochastic reserve problem involves determining what mix of reserve sources, 
including generator spinning reserve, load curtailment, and blackout, each having a 
different cost structure, is best suited to meeting the range of possible contingencies.  It is 
also necessary to ensure that both pre- and post-contingency power flows are feasible.  An 
added complexity is that sources of reserve can also be eliminated by contingencies, 
making reserve availability stochastic.  This problem also has an analogy with inter-
temporal constraints in that we must consider the linkage between the base state and the 
contingency state.  Further, following the re-establishment of equilibrium, it may be 
necessary to bring more generating units into the dispatch to replace expensive reserve 
options, such as blackout.  It may be several hours before these generating units can reach 
the required output.  This introduces longer term constraints, which may include integer 
variables, and apparent sub-optimality, into the reserve problem. 

The theory of "optimally" meeting system security requirements is reviewed by Stott, 
Alsac, and Monticelli (1987).  They distinguish between two approaches for scheduling 
reserve capacity, both for generating units and transmission lines.  The simplest, and most 
commonly used, approach is a security constrained dispatch, whereby target security levels 
are imposed on the dispatch, much as discussed in Chapter 6.  A security constrained 
dispatch does not explicitly model contingent states.  A more general approach is a 
contingency constrained dispatch, which can be modelled using a Contingency 
Constrained Optimal Power Flow (CCOPF) formulation.  The CCOPF can be viewed as 
an OPF formulation constrained to be feasible for a set of possible contingencies.  The 
CCOPF described by Stott et al. is based purely on engineering requirements, and does not 
consider the probabilities of contingencies occurring, or the costs associated with 
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operations in the contingency states.  While this formulation might introduce millions of 
extra constraints into the primal OPF formulation, only a few of these are ever likely to be 
binding at optimality.  An iterative solution process is used to solve this problem.  Given 
an initial dispatch, the violated, or near binding, security constraints are identified.  A new 
problem is then solved subject to the pre-contingency, or base state, constraints, and the 
post-contingency constraints of the selected contingencies.  This procedure is repeated 
until no violations remain. 

Stott et al. report that a conservative formulation of the CCOPF has the system 
dispatched so that the base state has the capability to respond to all contingencies, so no 
major control action is required when a contingency occurs.  For instance, if responses 
based on frequency drops or initiated by automatic generation controls (AGC) give rise to 
feasible contingency states, with no system limits violated, then system security is 
maintained without any direct action being required of the dispatcher.  A more risky, 
though cheaper, approach is to not cover all possible contingencies but rather to re-
dispatch the system immediately once a contingency has occurred so as to alleviate any 
constraint violations. 

An accurate economic representation of the stochastic contingency problem is more 
complicated than the form described by Stott et al., involving the minimisation of the 
expected costs over all states, rather than just the base state.  This may greatly increase the 
number of contingency constraints that are binding.  Such general dispatch models are not 
used in practice, presumably because of their size and complexity. 

9.3. Review of Pricing Models of Stochastic Reserve Dispatch 

Caramanis, Bohn, and Schweppe (1987), building on the ideas of Caramanis et al. 
(1982), describe a stochastic reserve pricing model, explicitly modelling all possible 
contingent states of the system via linear security constraints.  Prior to dispatch, and in 
addition to normal energy market transactions, each market participant pledges reserve (an 
increase in generation or a decrease in demand) and sets a minimum reserve price for the 
use of that reserve when called upon.  Given the pledged reserve, a price is determined for 
reserve made available, this price being the shadow price on the primal constraint requiring 
that some minimum reserve availability be achieved.  During the period, as actual 
(stochastically distributed) reserve requirements become apparent, reserve is called upon 
and a price for this power is set in accordance with the original reserve offer prices.  
Consumers and generating companies maximise their individual expected welfare with 
respect to their demand levels, and reserve availability as well as to the distribution of 
possible reserve usage, the expected payment (positive or negative) to a market participant 
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equalling the value of that participant's net energy supply in the absence of a contingency, 
plus the value of its marginal contribution to meeting the system's total reserve availability 
requirements, plus the expected value of the extra generation it actually provided (or 
required) during the period. 

Berger and Schweppe (1989) present a more radical implementation, which uses 
prices to guide a power system through the short transient phase following a contingency.  
Information about the willingness of each market participant to react to a particular price 
change might be provided by a "black box" representation of that participant.  Berger and 
Schweppe acknowledge that this model is only speculative, but argue that further research 
seems justifiable.   

Hogan (1991) proposes an alternative approach, which uses a CCOPF based primal 
formulation to determine ex post prices which account for post-contingency power flow 
feasibility requirements.  Given an observed solution it is possible to identify the security 
constraints which were binding and to account for them in the prices accordingly.  To 
model generating unit failure Hogan proposes defining the losses relative to the loads prior 
to the contingency occurring but the transmission constraints relative to the post-
contingency power flows.  This approach is consistent with a CCOPF formulation which 
typically only models pre-contingency losses.  Hogan does not explicitly model ramping 
constraints which might be imposed on generating units (though in principle this can be 
modelled by modifying the offer prices134), and makes no explicit account of the 
contingency probabilities. 

The models of Caramanis et al. and Hogan address different aspects of the stochastic 
contingency problem.  On one hand, Caramanis et al. (and Berger and Schweppe) focus on 
the providers/users of reserve, and present a model which explicitly accounts for 
stochasticity.  On the other hand, Hogan deals more with transmission constraint issues, 
and his model is based on the requirement of maintaining feasible power flows during 
contingency, with no regard for probabilities.  Hogan's proposal is based closely on present 
engineering practice while the proposal of Caramanis et al. optimises the operation of the 
power system.  Hogan prices for what actually happened, subject to expectation of 
contingency requirements, while Caramanis et al. (1987) price for reserve availability prior 
to the dispatch, and for reserve usage during the dispatch.   

                                                 

134 As discussed in Section 8.4. 
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9.4. Dispatch Based Pricing and the Stochastic Reserve Problem. 

The models of the previous section abstracted away from the "ideal" reserve pricing 
model.  Ignoring transient effects, the "ideal" model would require that demand be satisfied 
in each system state, whether by generation, load curtailment, or blackout, and that the 
most economical mix of reserve capacities be maintained in that state so as to allow 
demand to be satisfied most economically if the system state changes due to any additional 
outage135.  Unlike the model of Caramanis et al. (1987), this model is recursive, with each 
state being constrained in an analogous manner to the "no outage", or "base state".  If we 
assume that this recursion continues until a state is reached in which all generating units 
have failed, then each state will be more tightly constrained, and hence will have a higher 
energy price, than its predecessor.  This "ideal" model, therefore, exhibits the type of 
pricing behaviour often assumed in loose discussions of reserve issues, namely that the 
price in a contingency state is higher than if no contingency has occurred, and that the 
contingency state prices rise with the size of the contingency. 

While economically elegant, the complexity of such an "ideal" model is likely to be 
so great as to make its use impractical, especially when one considers the relatively 
unambitious goals of contingency models actually used by engineers.  We must therefore 
consider simpler models which represent the basic engineering objectives, which can 
provide a consistent dispatch based pricing interpretation, and which can be solved in 
practice.  A model of the type proposed by Caramanis et al. (1987) would appear to be a 
practical compromise between the simplicity of the model of Chapter 7 and the complexity 
of the "ideal" model.  The Caramanis et al. model sets the reserve to be carried in the base 
state, and requires that any of this capacity which is unused in a contingency state must 
still be carried as reserve.  This latter condition is very important, as it gives the system 
some ability to respond to further contingencies, even if these are not explicitly 
modelled136.  The reserve which is carried in the base state does not need to be an arbitrary 
choice, as in Chapter 6, but can be optimised so as to minimise the cost of the dispatch137.  
We refer to this type of model as an "Optimal Reserve Targeting", or ORT, model.  This 

                                                 

135 Such a model has been derived in a discussion draft by Ring (1995). 

136 If this condition were not imposed then the optimal response to the smallest contingency would be 
to meet it with the cheapest merit order dispatch and to shut down all surplus generating units, 
leaving the system with no further reserve capabilities (apart from the use of the generating unit 
which is marginal in this state).  Thus the price would almost always fall during contingencies. 

137 If the base state reserve is insufficient to cover an outage then blackout must be employed. 
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model requires that the dispatcher ensures that the mix of reserve sources available is 
economically justifiable given the range of possible contingencies. 

A crucial assumption of this and the other models described in the literature review 
is that the system responds optimally when an outage occurs, at least with respect to the 
formulations assumed.  One interpretation of this could be that it is possible to monitor and 
control the system perfectly during a contingency, allowing the dispatcher to choose the 
cheapest response.  This may not be the case in reality, though.  A drop in system 
frequency may be the only signal that something has failed, with turbine governors 
responding automatically.  Hence the response may be initiated before the dispatcher 
knows what has failed, and this creates uncertainty as to whether the response is optimal or 
not.   

An alternative interpretation might be to view the role of the dispatcher as optimising 
the trigger mechanisms for the automated responses.  In effect, the dispatcher must 
determine the best form of response without anticipating that a specific contingency is 
actually going to occur.  For example, if turbines and curtailable load typically respond 
automatically to sudden frequency drops, the dispatcher should optimise the frequency 
trigger point138 at which each of these sources initiates a response so as to minimise the 
expected cost of reserve provision over all contingencies, but can not be expected to 
intervene to provide an "optimal" response to a particular emergency.  This approach may 
produce higher costs than if the dispatcher could optimise the response in real time, but 
this simply reflects a real constraint on the system, and hence can be justified 
economically. 

If we assume the existence of an accepted industry measure of the recent reliability 
of generating units, the role of dispatch based pricing can be seen as one of determining 
prices for energy and reserve which are consistent with this measure and the bids and 
offers of the market participants.  Given this viewpoint, an appropriate pricing model 
might have the form of that in Chapter 4, but would include CCOPF type constraints on 
power flows but with ORT type constraints dictating the utilisation of spinning reserve, 
load curtailment, and blackout.  Some variant of the constraints of the reserve model in 
Chapter 6 might fulfil this latter role, at least in New Zealand.  In the primal dispatch 
problem we would require that the capacity of spinning reserve and load curtailment139 
                                                 

138 If automatic generation controls (AGC) are employed then the response may not be initiated directly 
by a frequency drop, and rather than setting the frequency trigger points the dispatcher can instead 
optimise the AGC response. 

139 This problem may be simplified in practice if load curtailment availability is based on a long term 
contract, fixing the load curtailment availability in the short run. 
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scheduled by the dispatcher be sufficient to cover the minimum frequency and surplus 
reserve constraints corresponding to a range of outages based on different combinations of 
generating unit and transmission failures, with blackout being the option of last resort140.  
The probability weighted cost of calling on the reserve sources would be reflected in the 
primal objective function, and hence the price bounds on the dual.  

Finally, the dispatch based pricing philosophy provides two ways of relating the 
prices to the dispatch.  Prices can be: 

•  based on dispatch outcomes, so that those generating companies which choose, or are 
required, to provide reserve would receive no reward unless a contingency actually 
occurred, in which case prices would have to rise to very high levels during this 
contingency.  The price for reserve actually called on for each contingency would 
equal the marginal cost of matching an increase in the contingency size. 

•  based on dispatch intentions, so that those generating companies which choose, or 
are required, to provide reserve would be paid a standby fee, irrespective of whether 
a contingency actually occurs or not, and may receive little or nothing extra during a 
contingency.  The overall expected energy price would equal the expected marginal 
cost of matching an increase in demand over all states. 

These approaches would be expected to be equivalent, but the value which both 
dispatcher and dispatched are likely to place on ensuring some degree of certainty in this 
situation make the latter a more practical approach.    

9.5. An Optimal Reserve Targeting Pricing Model 

We here present a simple illustrative example of an ORT pricing model.  This model 
is similar to the model of Caramanis et al. (1987), though we consider a more specific form 
of reserve/generation trade-off function and instead of modelling a single energy 
conservation constraint with reserve requirements we use a different, but equivalent, 
formulation involving an energy conservation constraint for each state.  The main original 
contribution of this and the following sections is in extending the analysis of the dual 
formulation. 

                                                 

140 Further constraints may be required but our aim here is simply to suggest a basic structure for 
further investigation. 
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We assume that the reliability of each generating unit is known and that the 
contingency states are independent apart from their links to the base state via the reserve 
requirements.  For ease of discussion we ignore "electrical" constraints and variables.  
Hence our model revolves around the active power energy conservation constraint, in each 
contingency state, and the limits on generation and reserve availability.  The requirement 
to cover lost generation capacity in a contingency state can be viewed as a simple analog 
of the requirement to respond to a frequency drop.  While modelling the relationship 
between generation and reserve for each generating unit, we ignore the limits imposed on 
the reserve response of individual generating units by the wider system.  For instance, 
some of the constraints we ignore include: 

•  Constraints imposed on a frequency keeping station.  Such a station has the role of 
countering small frequency variations in normal operation.  While the marginal 
generating unit can most economically fill this role, power systems are often 
operated with less expensive generating units taking this role, and so incurring the 
opportunity cost of not fully using their generation capacity.  As discussed by Read 
and Ring (1995b), these stations can normally be modelled in a dispatch based 
pricing framework by fixing their output, producing a shadow price which accounts 
for the difference between that generating unit's marginal cost and the system 
marginal cost.   

 The problem in the stochastic reserve situation is that the frequency keeping 
generating unit will be the first generating unit to respond to a frequency drop, but a 
model which minimises the cost of meeting contingencies will want to use cheaper 
reserve sources first.  This would not be a problem if the smallest contingency 
required a response greater than the feasible response of the frequency keeping 
station, as we could then constrain it to always make the maximum response.  The 
difficulty occurs when the frequency keeping station is capable of providing all the 
reserve capacity needed to cover a small contingency, and would do so in practice.  
We might avoid this problem, though, by defining a "contingency" to be any event 
large enough to require more than a frequency keeping response.  Alternatively, we 
might modify the marginal reserve cost of the frequency keeping station so that it 
appears to be the cheapest source of reserve141.  

                                                 

141 While this would violate the bounds set by the offer price of a normal market participant, a 
frequency keeping station is likely to be providing this service under contract to the dispatcher 
rather than responding to market signals. 
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•  Some generating units, or curtailable loads, may have special links with particular 
pieces of equipment which may break down.  This situation is analogous to that for 
the frequency keeping station, and might be handled in a similar way.  

•  Groups of generating units and curtailable load may be required to respond in a 
proportional manner so as to get a geographically dispersed response, reducing the 
need for dramatic changes in transmission line flows.  This could easily be modelled 
in practice, simply by introducing a primal constraint and corresponding shadow 
price which reflect this linkage. 

The model we present is consistent with that in Chapter 4 in that all the new terms 
introduced here can be represented by either the generalised variables or constraints of that 
model.  These same facilities can also allow the modelling of many of the more complex 
effects which we ignore.   

9.5.1. Notation and Terminology 

We make use of the following sets: 

•  The Base State: A superscripted "0" indicates terms relating solely to the non-
contingency state or "base state".  

•  The Set of Contingency States: The contingency states are denoted by the set U.  
This set does not include the base state. 

•  The Set of Generating Units: The set PG is used to denote the set of generating units.  
Demand is not included in this set as we assume that there is only one load. 

The other terms we use are: 

•  π0  is the probability that the system is in the base state, i.e. the state in which no 
contingencies have occurred. 

•  πu  is the probability of the system being in contingency state u U∈ .  These 
contingency states are only linked via the base state.  Note that: 

 π πu

u U∈
∑ = −1 0   (9.1) 

•  PD  represents the single load, while generation is indicated by PGi  ∀ ∈i PG .  These 

variables are assumed to apply over all states, with additional variables or parameters 
being used to represent changes during contingency states.   
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•  δi
u  is a 0-1 parameter (note that it is not a variable) which takes a value of 1  if 

generating unit i is operational in state u, and a value of 0 if generating unit i fails in 
state u.  

•  pRi
u , pC

u , and pB
u . describe, respectively, the amount of spinning reserve (from 

generating unit i), load curtailment, and blackout actually utilised in contingency 
state u. 

•  PRi  and PC  are respectively, the spinning reserve (from generating unit i) and load 

curtailment capacities which the dispatcher chooses to schedule in the base state.  
These place an upper limit on the amount of these resources which can be used 
during a contingency. 

•  PRi
max  and PC

max  are, respectively the spinning reserve (from generating unit i) and load 

curtailment capacities made available to the dispatcher.  These are exogenous 
variables and hence we treat them as constants.  These values place an upper limit on 
the amount of these resources which the dispatcher can schedule in the base state. 

•  cPi  is the fuel cost associated with generation and reserve response provided by 

generating unit i. 

•  cC , and cB   are, respectively, the (constant) marginal costs of calling upon curtailable 

load and blackout.  The blackout cost is assumed to be the system shortage cost, this 
exceeding all other costs we model. 

•  The "marginal generating unit" is that generating unit which reacts to satisfy a 
change in demand.  Since demand is assumed to be the same in all states the 
marginal provider of energy is the same across all states.   

•  The "marginal reserve source", however, reacts to satisfy a change in contingency 
size in a given contingency state, and hence different reserve sources may fill this 
role in different contingency states.  The concept of a marginal reserve source is 
redundant for the base state.  

9.5.2. The Primal Formulation 

A primal reserve/energy dispatch formulation is described by (9.2) to (9.11). 
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 Conservation of Power 
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
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


 ∑
∈

 = 0 :π λ0 0
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δ  = 0 :π λu
P

u  ∀ ∈u U  (9.4) 

Bounds on reserve usage 

 P pRi i
u

Ri
u

i
uδ δ−  ≥ 0  :π ωu

Ri
u  ∀ ∈i PG ∀ ∈u U  (9.5) 

 P pC C
u−  ≥ 0  :π ωu

C
u  ∀ ∈u U  (9.6) 

Bounds on reserve availability and generation usage 

 −PC  ≥ −PC
max  :υC

+   (9.7) 

 −PRi  ≥ −PRi
max  :υRi

+  ∀ ∈i PG  (9.8) 

 − −P PGi Ri  ≥ −PGi
max  :υPi

+  ∀ ∈i PG  (9.9) 

 PGi  ≥ PGi
min  :υPi

−  ∀ ∈i PG  (9.10) 

Load Settings 

 PD  = PD
set  :βP   (9.11) 

The objective function (9.2) minimises the expected cost, over all states, of calling 
upon generation, spinning reserve, load curtailment and blackout.  The δi

u  parameter is 

used to eliminate the cost of generation and reserve of those generating units which have 
failed in contingency state u.   

The base state energy conservation constraint is described by (9.3).  During 
contingencies, (9.4) requires that the existing level of generation from the remaining 
operational generating units, plus any additional reserve they provide, equals demand less 
load curtailment and blackout.  It is assumed that no operating generating unit will ever 
decrease its generation during a contingency, this being enforced by the requirement that 
pRi

u ≥ 0.  In effect, this means that the reserve carried in the base state, but unused in 

contingency state u must still be carried to cover any further contingencies which might 
occur but which have not been modelled. 
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Equations (9.5) and (9.6) specify the relationship between reserve usage and reserve 
scheduled for both spinning reserve and load curtailment.  The δi

u  parameter eliminates 

those relationships in (9.5) which are irrelevant due to the failure of generating unit i.  
Equation (9.4) plays an analogous role for blackout, as it limits blackout to being less than 
total demand.  Equations (9.7) and (9.8) require that the capacities of spinning reserve and 
load curtailment scheduled in the base state cannot exceed the capacities made available by 
the market participants.  Equation (9.9) limits the combination of generation and reserve 
capacity of generating unit i to be less than the maximum possible generation, while (9.10) 
places a lower bound on generation where appropriate.  As in Chapter 4, the level of load 
is assumed to be externally specified, in this case by (9.11).   

9.5.3. The Dual Formulation 

The dual formulation is shown in (9.12) to (9.19). 
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Subject to: 
Energy Price Defined by Demand Level 

 − − +
∈
∑π λ π λ β0 0

P
u

P
u

u U
P  = 0    :PD   (9.13) 

Energy Price Constrained by Generation Costs 

 π λ π λ δ υ υ0 0
P

u
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u U
i
u

Pi Pi+ − +
∈
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Uu

u
i

u c






 += ∑
∈

δππ0  :PGi  ∀ ∈i PG  (9.14) 

Spinning Reserve Capacity Price Defined by rent on reserve usage 

 π ω δ υ υu
Ri
u

u U
i
u

Pi Ri
∈

+ +∑ − −  ≤ 0   :PRi  ∀ ∈i PG  (9.15) 

 π λ δ π ω δu
P

u
i
u u

Ri
u

i
u−  ≤ π δu

Pi i
uc    : pRi

u  ∀ ∈i PG ,u U∈  (9.16) 

Reserve Price/ Load Curtailment Capacity Charge  
Ceiling Imposed by Spinning Reserve Cost 

 π ω υu
C
u

u U
C

∈

+∑ −  ≤ 0   :PC   (9.17) 

 π λ π ωu
P

u u
C
u−  ≤ πu

Cc    : pC
u  ∀ ∈u U  (9.18) 

Absolute Reserve Price Ceiling Imposed by Blackout Cost 

 π λu
P

u  ≤ πu
Bc    : pB

u  ∀ ∈u U  (9.19) 

From (9.13) we can define the average energy price as: 

 β π λ π λP P
u

P
u

u U

= +
∈
∑0 0   (9.20) 

Substituting this into (9.14) and making use of (9.1) yields: 

 ( )( ) −+

∈

−+−−−= ∑ PiPi
Uu

u
iPi

u
P

u
PiP cc υυδλπβ 1  ∀ ∈i PG  (9.21) 

This states that, for generating unit i, the expected energy price equals its marginal cost 
less the profit foregone when it breaks down plus the rents on its generation capacity.  If 
this unit is the marginal provider of energy, and never breaks down, the rents on its 
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generation capacity are zero142 and the expected price equals its cost.  Note that this does 
not mean this generating unit's fuel cost will equal the base state price, λ P

0 , but the 
expected price over all states.  Thus it is possible for the marginal generating unit to make 
a loss (or profit) on PGi  in the base state, its higher (lower) earnings on PGi  during 

contingency states allowing it to just break even on average143.  Typically, operating 
generating units will earn positive rents on their generation and reserve, and, as in Chapter 
6, there is no particular reason why βP  should correspond to the marginal cost of any 
generating unit. 

If PRi > 0  then, by complementary slackness, (9.15) becomes: 

 υ π ω δ υRi
u

Ri
u

i
u

u U
Pi

+

∈

+= −∑  ∀ ∈i PG  (9.22) 

This equation defines the value of another unit of capacity taken to provide reserve in 
terms of the extra rent that can be earned from the additional reserve provision which this 
unit makes possible minus the loss due to withdrawing that unit of generation capacity.   

If p PRi
u

Ri<  then the complementary slackness conditions applying to (9.5) require 
that ωRi

u = 0, and (9.16) becomes λ P
u

Pic≤ .  Further, if we also have pRi
u > 0 then 

complementary slackness requires that (9.16) must be binding, so λ P
u

Pic= .  By a similar 
argument, if p PRi

u
Ri=  then complementary slackness requires that ωRi

u ≥ 0  and, since 
pRi

u > 0, (9.16) must be binding, i.e.144: 

 π ω δu
Ri
u

i
u  ( ) u

iPi
u
P

u c δλπ −=    (9.23) 

Since ωRi
u ≥ 0  (9.23) requires λ P

u
Pic≥  for δi

u =1.  Thus generating unit i will only provide 
reserve to contingency u if the marginal value of energy, λ P

u , in that state equals or exceeds 
the marginal cost of generating unit i.  If λ P

u  equals its marginal cost then generating unit i 
is the marginal reserve provider in that state, and makes no profit on its reserve capacity, 
i.e. ωRi

u = 0.  A profit is only made on reserve when generating unit i is not the marginal 
reserve provider and its reserve capacity is fully used, i.e. when λ P

u
Pic>  and δi

u =1.  The 

total profit, over all states, which is earned on either generation capacity or reserve 
capacity, is given by substituting (9.23) into (9.22) to give: 

                                                 

142 This does not imply that the rent on its reserve capacity will be zero, though.  This rent is implicit in 
the definition of βP  in (9.20). 

143 Refer to the later discussion on the price distribution in contingency states. 

144 While the δi
u  terms can be cancelled if we consider only the case where δi

u = 1 we retain these terms 
so as to avoid confusion in later substitutions. 
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Similarly, if PC > 0 then (9.17) gives the rent on scheduled curtailable load capacity 

as: 

 υ π ωC
u

C
u

u U

+

∈

=∑   (9.25) 

Again, if p PC
u

C<  then (9.6) requires that ωC
u = 0, and (9.18) becomes λ P

u
Cc≤ .  If 

0 < <p PC
u

C  then (9.18) becomes an equality with ωC
u = 0 and hence yielding λ P

u
Cc= .  If, 

however, p PC
u

C=  then ωC
u ≥ 0 and (9.18) becomes: 

 ( )C
u
P

uu
C

u c−= λπωπ   (9.26) 

This means that λ P
u

Cc≥ .  Thus, like spinning reserve, load curtailment will be marginal, 
with ωC

u = 0, when λ P
u

Cc= .  Load curtailment will be fully used, and its providers will 
make a profit of ω λC

u
P

u
Cc= − , if λ P

u  exceeds its marginal cost in state u.  No load 
curtailment will be used when λ P

u
Cc< .  The total profit, over all states, which is earned on 

load curtailment capacity is given by substituting (9.26) into (9.25) yielding: 

 ( )∑
≥∈

+ −=
C

u
P cUu

C
u
P

u
C c

λ

λπυ
:

  (9.27) 

Equation (9.19) requires that λ P
u

Bc≤ .  Since the marginal cost of blackout is the 
system shortage cost we would expect blackout to be marginal when it is called upon.  This 
can be seen by observing that if pB

u > 0  then the complementary slackness conditions on 
(9.19) require λ P

u
Bc= . 

This analysis demonstrates that in each contingency state the available reserve 
sources will be called upon in merit order, and that the marginal reserve provider sets the 
price of calling upon reserve in that state.  The possibility of spinning reserve providers 
failing during contingency states means, however, that it is not necessarily true that the 
price of calling upon reserve in a given contingency state rises monotonically with the 
outage magnitude.  For example, consider the situation where 1000MW of reserve is called 
upon in a contingency state in which no reserve sources fail.  In this case generating unit i 
happens to be the marginal reserve provider.  There might be another state in which 
generating unit i fails, but the total outage to cover is only 950MW.  Now it might be 
necessary to call upon a more expensive reserve source than generating unit i, resulting in 
a higher price for reserve called upon despite the contingency being smaller145. 

                                                 

145 If we were to define the "contingency" to be the sum of the loss of both generation and reserve 
capacity then we would expect the price of reserve called upon to rise monotonically with 
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9.5.4. Interpretation of the Base State Energy Price 

An intuitive expectation of the behaviour of the λ P
u  terms might be that they are all 

greater than λ P
0 , on the grounds that less energy capacity is available in state u.  This 

intuitive analysis overlooks the fact that the base state is constrained to have enough 
reserve to cover any contingency, while the contingency states may, depending on the 
formulation, have no reserve constraints imposed on them to cover further contingencies.  
Thus the base state is often the most tightly constrained.  Consequently the behaviour of 
λ P

0  may be quite different from that suggested by simple intuition.  To illustrate this, we 
consider the ORT model for the case where a reserve providing generating unit is perfectly 
reliable and is operating above its lower generating bound.  For this unit (9.21) requires: 

 β υP Pi Pic= + +    (9.28) 

Substituting for υPi
+  from (9.24) and for βP  from (9.20) we get: 
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≥∈∈

−−+=+ ∑∑ Ri
cUu
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u
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u
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Uu
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P

u
P

Pi
u
P

cc υλπλπλπ
λ:

00    (9.29) 

This can be re-arranged as: 

 ( ) +

<∈

−−+= ∑ Ri
cUu

u
PPi

u
PiP

Pi
u
P

cc υλππλπ
λ:

000    (9.30) 

That is, an increase in the losses incurred by generating unit i in any of those states 
for which λ P

u
Pic<  causes λ P

0  to rise in value, while an increase in the profits earned by 
generating unit i in any of those states for which λ P

u
Pic>  cause λ P

0  to decrease in value.  If 

we now consider the situation where this generating unit is the marginal generating unit, 
with βP Pic=  (i.e., it is partially loaded with υPi

+ = 0), then (9.24) requires that: 
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Substituting this into (9.30), and replacing cPi  with βP  yields: 
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contingency size.  This observation is not useful in practice, though, because we need to know the 
contingency sizes, which are now a function of the available reserve capacity, before determining 
the optimal reserve capacity to have available. 
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This implies that if: 
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 then λ βP P
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This result indicates that, given the prices for calling upon reserve in the contingency 
states, λ P

0  can be viewed as a slack term which takes whatever value is required to ensure 
that adequate revenue is earned on base state generation.  For instance, case 1 describes the 
situation where the expected marginal loss made by the marginal generating unit146 in 
those contingency states for which λ βP

u
P<  is less than the expected marginal profits 

earned in those contingency states for which λ βP
u

P> , and hence λ P
0  can be reduced below 

βP  while still allowing the owner of the marginal generating unit to break even.  If the 
marginal generating unit is just breaking even then all other operating units must be 
earning a non-zero expected marginal profit.  Conversely, in case 2, λ P

0  must exceed βP  if 
the marginal generating unit is to break even when its expected marginal losses in 
contingency states exceed its expected marginal profits.  In case 3 the losses match the 
profits so λ βP P

0 = . 

For the smallest contingency we will generally have λ βP
u

P< , but since it is possible 
for λ βP P

0 >  we can conclude that it is also possible for λ P
0  to exceed some λ P

u .  That is, the 
price for reserve called upon during a contingency state can be lower than the base state 
price.  This result contradicts the intuitive argument put forward above.  Note that the price 
paid by firm load, PD , is βP , the expected price , because PD  appears in the base state and 
all contingency state equations. 

9.6. A Graphical Representation of the ORT Pricing Formulation 

Figure 9.1 depicts a simple representation of the outages which might occur.  We 
assume that all spinning reserve sources are totally reliable, and do not fail in any 
contingency state147.  The vertical axis describes the magnitude of possible outages, which 

                                                 

146 I.e., the marginal provider of energy across all states. 

147 It is difficult to describe our results graphically when some reserve sources are only available for a 
subset of the contingency states. 
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we assume to be either a megawatt loss in power or a frequency drop, while the horizontal 
axis describes the cumulative probability of an outage equalling or exceeding a given 
magnitude.  The outages represented may involve the simultaneous failure of several 
generating units.  The base state is also shown, having no outage, though the probability of 
this state has been greatly under-represented in order to maintain a reasonable scale on the 
graph.  Ring and Read (1994) refer to this representation as an "Outage Duration Curve" 
by analogy with the well known "Load Duration Curve", but note that it is the probability 
of each outage state, rather than the "duration" of any particular incident which is being 
represented. 

Cumulative Probability

Outage Magnitude (Megawatt Loss or Frequency Drop)

10

π1π2π3 π0

123 0

 
Figure 9.1: A graphical representation of the reserve requirements 

The curve in Figure 9.1 can only be produced given the solution to the mathematical 
model above, as we do not know the output of the generating units, and hence the size of 
the outages, prior to solving that problem.  Historic evidence could be used to produce an 
approximation, however, as is done by Anstine et al. (1963). 

Figure 9.2 represents the pricing problem corresponding to Figure 9.1 for the case 
where there are two generating units providing spinning reserve and where we have the 
option of resorting to blackout.  The cost of calling on each form of reserve in each 
contingency state is shown (the slope of each line is shown inside a circle), with the bold 
lines indicating the marginal reserve source in each contingency state.  All reserve sources 
must provide reserve to cover the largest contingency, so the most expensive source, 
blackout, defines the marginal cost of reserve provision, λ P

3 , for that contingency.  If this 
state were to occur with a probability of one, then the two generating units which provide 
reserve would make marginal profits for their reserve contribution equalling the difference 



Chapter 9: Extensions to Spot Pricing Theory: Stochasticity 177 

 

between λ P
3  and their marginal costs.  However, as the probability of being in this state is 

only π3  these profits are weighted by this probability.  Thus the point on vertical line 3 
(i.e., the vertical axis) labelled π λ3 3

P  describes the expected value of a unit of reserve 
provided during a blackout.  By subtracting the marginal costs of generating units 1 and 2 
from this value, as indicated by the dotted sloping lines between vertical lines 2 and 3, we 
get the expected marginal profits during blackouts, π ω3

1
3
R  and π ω3

2
3
R  for generating units 1 

and 2 respectively. 

10
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Figure 9.2: The marginal cost of calling upon reserve in each contingency state. 

In state 2 blackout is not needed to cover the outage, so generating unit 2 is the 
marginal reserve source.  The price for reserve called upon in this state is λ P

2 , and it occurs 
with probability π2 .  Generating unit 1 is cheaper than unit 2, and so earns a profit of 
π ω2

1
2
R .  Generating unit 1 is the marginal reserve source for the smallest contingency, and 

makes no profit in this state, while a loss would be made on the reserve contributions of 
unit 2 and blackout, were they to respond.  Thus generating unit 1 makes a total marginal 
profit on reserve of ( ) ( )1

33
1

223
1

32
1

2
1RP PPPPRR cc −+−=+= λπλπωπωπ , while generating unit 
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2 makes a marginal profit of ( )2
333

2
3

2RP PPR c−== λπωπ .  No profit is made on blackout 
(RPB = 0 ). 
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Figure 9.3: The profits on generation and reserve in each state. 

Figure 9.3 depicts an alternative representation of this problem, but now provides 
information about the expected marginal profits earned on both energy and reserve 
capacity.  The (solid) cost lines of each reserve source have been raised vertically so that 
the convex hull they form over the contingency states (indicated by the bold line for a 
cumulative probability less than 1 0− π ) describes the cumulative, probability weighted, 
value of reserve provision for each point on the horizontal axis corresponding to a 
contingency state.  The points where the cost lines intersect the vertical axis describe the 
expected marginal profit earned on reserve capacity.  The bold line for state 0 has a slope 



Chapter 9: Extensions to Spot Pricing Theory: Stochasticity 179 

 

of λ P
0 , this slope taking what ever value is required to ensure that the expect prices over all 

states equals βP  (which, for this example, happens to equal cP2 ), hence satisfying (9.20).  
To the right of the graph we again show the expected marginal profit on reserve, RPi , but 

also show the expected marginal profit on base state generation over all states in which 
reserve is not called upon (including the base state), IPi , and the sign of the total expected 
profit on base state generation, GP IP RPi P Pi i ic= − = +β , for each reserve source. 

How we use this representation depends on whether we are pricing by outcome or 
expectation.  If pricing for outcome then we are only interested in the price of calling upon 
reserve in a given reserve state, or the price for energy in the base state, these values being 
defined by the slope of the bold line corresponding to that state.  If, however, we are 
pricing based on an expectation then we are interested in the expected value of these 
prices.   

The expected marginal reserve profit received by generating units 1 and 2 and 
blackout are RP1

2
1

2 3
1

3= +π ω π ωR R , RP2
3

2
3= π ωR  and RP3 0= , respectively, these values 

corresponding to the point on the vertical axis where the cost lines of these reserve sources 
intersect.   

Generating unit 2 is the marginal provider of energy because βP Pc2 2= .  It is purely 
coincidental that β λP P2

0= .  Generating unit 2 makes no overall profit on its base state 
generation (i.e. GP2 0= ) because while it earns a positive marginal reserve profit on this 
capacity in state 3 (i.e. RP2 0> ), it incurs a matching loss in state 1 (i.e. 
IP RP2 2 0= − < )148.  Thus unit 2 only makes a profit on reserve provision and we would 
expect P PR R

max
2 2
* = , but being the marginal unit it must be able to respond to changes in 

demand, and hence we also require that P P P PG
min

G G
max

R
max

2 2 2 2< < −* .   

For generating unit 1 IP1 describes the profit it earns on the energy it provides in the 
base state, this value being positive since cP P1

0< λ .  Since this unit also makes a net profit 
in those states in which its reserve is called upon (i.e. RP1 0> ), it must make a positive 
overall profit on its base state generation (i.e. GP1 0> ).  Thus generating unit 1 makes a 
profit on both its reserve capacity and its base state generating capacity.  We would, 
therefore, expect this unit to be operated so as to maximise both its reserve capacity and 
base state energy output.  This would correspond to the point P PR R

max
1 1
* =  and 

P P PG G
max

R
max

1 1 1
* = − . 

                                                 

148 Generating unit 2 just breaks even in both states 2 and 0. 
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We have implicitly assumed that demand can always be meet in the base state by 
generation, hence there is no need for blackout to provide "base state generation".  
However, were blackout to be used in this way it would incur a loss in all states in which it 
was not called upon to provide reserve (states 0, 1, and 2), and hence IPB < 0 .  Thus 
blackout provides no "generating capacity" as no profit can be made on such capacity, and 
it only breaks even on its reserve capacity (i.e. RPB = 0). 
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Figure 9.4: The trade-off between energy capacity and reserve capacity. 

Figure 9.4 provides a summary of the factors which determine how the trade-off 
between reserve and energy provision is determined for a given power source.  The slope 
of the bold line indicates the marginal value of reserve in each contingency state as well as 
the value of λ P

0 .  Two solid lines are shown running at tangents to this bold line.  The 
tangent with slope cPM  is the cost line for the marginal generating unit (βP PMc= ).  If we 
define ( )Uuu

PP
min
P ∈∀≡  min 0 λλλ ,  then the tangent with slope cPR P

min= λ  corresponds to the 

cost line for a (potentially hypothetical) generating unit which defines this price.  For each 
of these generating units the expected marginal profit on base state generation (TRPR  and 
TRPM ) has been projected on to the vertical axis, effectively dividing the graph into three 
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regions.  Introducing generating unit i, having an expected marginal profit on base state 
generation of TRPM  and a marginal cost of cPi , we can interpret these regions as follows149: 

•  Region A: If the line labelled cPi  passes through this region then we must have 
c cPi PR< .  This means that generating unit i will make a profit in every states, and 

should therefore be fully loaded in all states.  Thus this region corresponds to a unit 
which should only provide generating capacity (P PGi Gi

max* = , PRi
* = 0).   

•  Region B: If the line labelled cPi  passes through this region then we must have 
c cPR Pi P≤ ≤ β .  This unit can make a non-negative profit on both its reserve capacity 

and base state generation150.  As no direct losses are incurred on reserve capacity, 
this capacity can be expected to be more profitable than generating capacity, and 
hence this region corresponds to a unit which should maximise its reserve capacity, 
and use its remaining capacity for generation (P PRi Ri

max* = , P P PGi Gi
max

Ri
max* = − 151). 

•  Region C: If the line labelled cPi  passes through this region then cPi P> β .  Unit i 

would not provide any base state generation capacity as it could not expect to make a 
profit by doing this.  It can, however, make a profit on its reserve capacity in those 
contingency states in which λ P

u
Pic> , and will, therefore, maximise its reserve 

availability.  Thus this region corresponds to a unit which only provides reserve 
generating capacity  (PGi

* = 0, P PRi Ri
max* = ) 

                                                 

149 We ignore the possibility that generating unit i can break down. 

150 While it may make a loss on its base state generation in some states, this must be offset by profits 
earned in other states if we are to have PPic β≤ . 

151 Or P PRi Ri
max* =  and max

Ri
max

GiGi PPP −≤*  if cPi P= β . 
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Figure 9.5: The special case when the base state price is negative. 

Figure 9.5 illustrates the special case where cPR P
min

P= = <λ λ0 0.  This corresponds to 
a situation where the expected profits on reserve capacity are so high that all energy 
sources (which we assume to have positive marginal costs) will be prepared to operate at a 
loss in the base case so as to be available to take advantage of the high contingency state 
prices.  For this case region A will not exist, as no energy source can make a profit on base 
state generation. 

9.7. Analysis of the Dual ORT Objective Function 

Finally, an analysis of the dual objective function reveals the total expected profits.  
We can re-express the dual objective function in (9.12) in terms of observed primal 
solutions at the optimal dual prices.  Observing that P PD D

set* = 152 and that: 

•  if υ Pi
− >* 0 then (9.10) requires P PGi Gi

min* = , 

•  if υPi
+ >* 0 then (9.9) requires P P PGi Ri Gi

max* *+ = ,  

•  if υRi
+ >* 0 then (9.8) requires P PRi Ri

max* = , 

                                                 

152 As usual, a "*" denotes an optimal solution value. 
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•  if υC
+ >* 0 then (9.7) requires P PC C

max* = . 

The only non-zero terms in the function in (9.12) are: 

 ( )( ) ∑∑
∈

++

∈

+− −−+−+
PGi

RiRiCC
PGi

RiGiPiPiDP PPPPP ********** υυυυβ   (9.33) 

Or: 

 ( ) ( )∑∑
∈

+++

∈

−+ +−−−−
PGi

RiRiPiCC
PGi

GiPiPiDP PPPP ********** υυυυυβ   (9.34) 

We observe from (9.21) that: 

 ( ) ( )( )∑
∈

−+ −−+−=−
Uu

u
iPi

u
P

u
PiPPiPi cc δλπβυυ 1  ∀ ∈i PG  (9.35) 

Substituting for υ υPi Pi
+ −−  (from (9.35)), υ υPi Ri

+ ++  (from (9.24)), and υC
+  (from (9.27)) in 

(9.33) yields: 
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Or: 
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Here: 

•  βP DP* * describes the total payment made by consumers for firm power, 

•  while ( )∑
≥∈

−
C

u
P cUu

CC
u
P

u Pc
*

**

λ

λπ
:

 is the effective discount received by those consumers 

who offer curtailable load.   

•  ( )∑
∈

−
PGi

GiPiP Pc **β  describes the expected profit on reliable base generation, 

•  while ( )( )∑∑
∈ ∈

−−
PGi Uu

Gi
u
iPi

u
P

u Pc ** δλπ 1  is the expected profit foregone on base state 

generation when generating unit i fails.  This might be viewed as the amount which 
needs to be paid by the owner of unit i to buy in reserve to cover its own generation 
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commitments where these commitments are based on this generating unit being 
perfectly reliable. 

•  ( )∑ ∑
∈ ≥∈

−
PGi cUu

RiPi
u
P

u

Pi
u
P

Pc
λ

λπ
:

**  is the expected profit on reliable reserve capacity, 

•  while ( )( )∑ ∑
∈ ≥∈

−−
PGi cUu

Ri
u
iPi

u
P

u

Pi
u
P

Pc
*

**

λ

δλπ
:

1  is the expected profit foregone on reserve 

capacity when generating unit i fails.  As for base generation capacity, this might be 
viewed as the amount which needs to be paid by the owner of unit i to buy in reserve 
to cover its own reserve provision commitments where these commitments are based 
on this unit being perfectly reliable. 

9.8. Pricing in the Longer Term 

Our discussion thus far has only considered the immediate response to an outage.  In 
the longer term the system must be re-dispatched to meet the changing situation.  This 
introduces issues relating to inter-temporal constraints, integer variables, and sub-
optimality.  For instance, if we know in advance that a generating unit is going to fail then 
we can start ramping up a replacement generating unit well before the failure occurs.  
Without this perfect foresight the dispatcher might have to begin ramping up the new 
generating unit following the failure.  During this ramping phase the system can be viewed 
as operating sub-optimally given that we now know we require this generating unit (see 
Figure 9.6). 
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Figure 9.6: The behaviour of a power system during a contingency. 

If we assume that a new pricing period begins when the system is re-dispatched, with 
reserve margins fully restored, following a contingency then these issues are outside the 
scope of the present discussion.  Typically, the ramping generating unit, being hard against 
a constraint will not set the price.  Instead the price will be set by some more flexible, but 
more expensive power source. 

9.9. Conclusions 

Theoretically, marginal cost based dispatch based spot prices can be derived for 
convex stochastic power system problems.  In practice, though, the complexity involved in 
representing all facets of such problems means that some compromise in formulation detail 
is usually necessary.  The key issue then, from the perspective of dispatch based pricing, is 
to determine a compromise formulation which corresponds adequately to the most 
important features of the real problem, and which also has a consistent economic 
interpretation.  We suggest that in the context of the stochastic reserve problem the key 
goal in the primal problem should be to determine the optimal base state mix of reserve 
sources for the expected range of otherwise independent contingencies, and to require that, 
when a contingency occurs, any unused base state reserve capacity be maintained in case 
of further contingencies.  This model effectively determines the optimal level of reserve to 
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be carried without blackout being called upon, hence we refer to it as an "Optimal Reserve 
Targeting", or ORT, model.  While not included in our simple formulation, the requirement 
of feasible post-contingency transmission line flows would need to be included in a 
practical formulation. 

We have analysed the pricing relationships corresponding to our ORT model 
formulation and have shown that dispatch based prices based on intentions should be 
consistent with prices based on outcomes.  It is has been argued that when considering this 
model it is more intuitive to interpret the role of the dispatcher as optimising the system's 
automated response to contingencies rather than assuming that the dispatcher will 
determine the "optimal" response once a contingency occurs.  We have also shown that the 
common assumption that the prices rise in contingency states relative to the base state is 
not necessarily true for this formulation153.  The price in the base state takes what ever 
value is required to account for the difference between the marginal cost of meeting an 
increase in energy demand and the expected prices for reserve provision of all contingency 
states. 

For the situation where generating units never breakdown we have shown that: 

•  if no state has a price exceeding a generating unit's marginal cost then that unit 
should use all its capacity to provide energy in the base state, 

•  if the generating unit's marginal cost equals or exceeds the price in at least one state, 
but is less than the marginal cost of meeting an increase in energy demand, then this 
unit should make the maximum possible reserve contribution while profitably using 
any remaining capacity to provide energy in the base state, while 

•  if the generating units marginal cost exceeds the marginal cost of meeting an 
increase in energy demand then this unit should make the maximum possible reserve 
contribution but make no base state energy contribution. 

An analysis of the ORT pricing model objective function indicates that the actual 
market transactions can be partitioned into transactions in reliable power and reliable 
reserve capacity and transactions for power to cover each generating company's 
commitments where these commitments are based on the generating units being perfectly 
reliable. 

                                                 

153 Though this assumption should be true for some more general representation of the stochastic 
reserve problem. 
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The stochastic reserve model has strong inter-temporal aspects, as the system may 
take some time to fully adapt to the failure of lost generating unit.  However, if a new 
pricing period begins once the systems initial response to a contingency has occurred then 
these issues are outside the scope of the present discussion.   





 

 189 

Chapter 10 

Extensions to Spot Pricing Theory:  
Integer Dispatch Variables 

10.1. Introduction 

Integer variables are not consistent with a marginal cost pricing approach as the 
dispatcher only has the choice of whether or not to employ an integer process, incurring a 
cost which is only a function of that decision, not the amount produced.  The commitment 
of a generating unit provides an example of an integer constraint; the unit is either on or 
off, and the act of committing it to run incurs a "start up cost154" while "running overhead" 
might be incurred for each period it is committed, both these costs being independent of 
the output level at which the unit is operated.  Incurring these costs implies a commitment 
to participate in the market, and hence we will refer to these costs as commitment costs155.  
We distinguish between short run commitment costs, being costs for decisions which are 
made on similar time scale to the dispatch, and long run commitment costs, which relate to 
decisions based on much longer time scale considerations.   

Here we concentrate on short run commitment costs which include: 

•  Generating unit start up costs.  We define these costs so as to include the inevitable 
cost of shutting the generating unit down again. 

•  Generating unit "running overhead" costs.  Both hydro and thermal generating units 
incur a fixed cost, either in terms of fuel usage or power consumption, for each 
period they are "on" irrespective of their output level. 

•  Curtailable load contracts.  These may require that load be dropped in discrete 
bundles, implying a commitment cost in the exercising of the contract. 

                                                 

154 We define "start up" costs so as to include the inevitable shut down costs. 

155 The use of the term "commitment cost" also occurs in the literature on strategic games.  While we 
are not intending this terminology to necessarily be interpreted in the same sense, our definition is 
broadly analogous. 
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•  Non-linear rents.  These arise because not all costs associated with convex non-linear 
functions can necessarily be attributed to any single party. 

Long term commitment costs, which are not considered here, may be associated 
with: 

•  Capital investment costs for generating companies and the transmission system.  

•  Generating station and transmission system maintenance costs.  

•  Miscellaneous overheads. 

A significant implication of commitment costs is that there may not be a unique 
power price which is consistent with them.  For instance, bringing a generating unit into 
the dispatch may sufficiently change the economics of the power system to make it appear 
to be uneconomical to dispatch that station.  Consider the situation in which generating 
unit i is idle, having a fuel cost of 4c/kW, but could recover its commitment cost at the 
prevailing spot price of 5c/kW.  Then it would appear that it should be dispatched.  But 
suppose that, upon being dispatched, the generating unit which had previously defined the 
price is no longer required, generating unit i becomes marginal, and the marginal price 
falls to 4c/kW.  Due to the commitment costs incurred this is now an unprofitable dispatch 
for generating unit i, although it may actually be the optimal solution.  In fact there is no 
energy price which produces the optimal solution.  Similar situations can arise with longer 
term investment problems.  This "duality gap" problem, is not peculiar to dispatch based 
pricing, but is pervasive in integer optimisation problems, and can not be directly 
addressed within a standard marginal cost based pricing model.  In most situations this 
does not matter, because the scale of the costs involved are small enough to cause a 
negligible distortion to the overall linearity (or more exactly convexity) of the problem, 
and there is enough uncertainty to obscure the effect.  It is still desirable to have a pricing 
mechanism which accounts for duality gaps when they have a clear impact on the dispatch, 
though. 

In the following section we review the literature on recovering integer costs.  In the 
remainder of this chapter we then introduce some additional approaches for fixed cost 
recovery and consider how dispatch based pricing and best compromise pricing may be 
used to implement these new ideas as well as some of the ideas discussed in the literature 
review.  
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10.2. Review of Integer Pricing Models 

Given the diverse range of commitment costs which can be encountered it may be 
necessary to consider more than one mechanism for recovering these costs.  The best 
choice of mechanism to use in a particular instance will depend greatly on the magnitude 
of the commitment cost and which market participants incur that cost.  For instance, Read 
and Sell (1989) use a DC approximation of the New Zealand system to estimate that only 
10% to 30% of the costs of optimally sized transmission lines could be recovered through 
optimal short run pricing.  They conclude that some form of fixed annual charge, in 
addition to normal spot prices, would be appropriate in this instance.  Non-linear rents 
might also be covered by a fixed charge, as it is not possible to associate these with any 
single market participant.  A positive rent will reduce the required magnitude of the fixed 
charge, while a negative rent will increase the required fixed charge.  A fixed annual fee, 
used in conjunction with spot prices, can be interpreted as an example of non-linear 
pricing, an approach which allows pricing regimes to take their "optimal" form, rather than 
being required to satisfy some predetermined functional form156.  That is, not only are the 
parameters of the pricing model optimised, but the functional form of the model is 
optimised.  By forming the dual of a primal problem with the appropriate revenue 
constraints included we can determine the optimal pricing regime.  The Priority Service 
Contract approach of Chao et al. (1986) and Chao and Wilson (1987), described in 
Chapter 2, is a form of non-linear pricing which aims to explicitly recover commitment 
costs (at the retail level) in an optimal manner157.   Schweppe et al. (1988) report that an 
effective implementation of this approach may require a good knowledge of the benefit 
functions of market participants. 

In contrast to transmission costs and non-linear rents, generating unit commitment 
costs can be associated with a single market player.  If power systems were described by 
continuous variables, then, in the absence of economies of scale, standard spot prices 
would be able to recover the costs associated with socially optimal generation (and 
transmission) investment.  For example, the results of Joskow (1976), Caramanis (1982), 
and the survey of Bergendahl (1983), suggest that if both capacity and actual production 

                                                 

156 Though for the example of transmission network long run commitment cost recovery this structure 
is still not necessarily truly optimal, but the fact that these long run costs are typically an order of 
magnitude greater than the cost of actually operating the network suggests that it is nearer to being 
an optimal regime than simply recovering these costs via the spot market. 

157 The data requirements of this approach are very demanding though, with an accurate model of the 
dependence of each market participants behaviour on price being required if the true optimal pricing 
regime is to be found. 
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can be considered to be continuous variables, then the prices must obey the following 
equations158: 

 If PGi
t = 0 then β υP

t
i Pi

tc< + , otherwise β υP
t

i Pi
tc= +  ∀ ∈ ∈i I t T,  (10.1) 
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 If P PGi
t

Gi
max=  then υ Pi

t > 0, otherwise υ Pi
t = 0 ∀ ∈ ∈i I t T,  (10.3) 

Here υ Pi
t  is the capacity charge for node i in period t and κ i  is the marginal cost of 

investment for generating unit i, while α i
t  represents the fraction of period t for which 

generating unit i is available.  These equations indicate that, in the absence of other system 
constraints, generating unit i will only earn profits to cover its investment costs during 
those periods in which all its capacity is used.  

In a market situation, companies will only commit to invest in generating capacity if 
they expect to recover their investment costs.  This latter conclusion holds when the 
integer nature of investment is considered, but (10.2) must be replaced by a constraint, for 
each generating unit (or generating station), requiring that the net present value of the 
future stream of capacity charges equals or exceeds the investment cost.  Equations (10.1) 
and (10.3) are included in standard spot pricing formulations, so one approach to this issue 
would be to use standard models to determine spot prices while leaving the generating 
companies to assess whether the expected capacity charges will recover their investment 
costs.  It is unclear whether this approach will produce socially optimal investment.  

An analogous situation applies to the recovery of short run commitment costs.  If the 
spot prices based on marginal generation costs fail to recover commitment costs for a 
socially optimal dispatch, then we must consider modifying, or supplementing, the pricing 
regime.  While the simplest way to recover commitment costs would be to add their 
average half hourly values to the spot price, such an unsophisticated approach would 
distort the spot prices, creating an asymmetry between generation and demand, and 
reducing the spot prices ability to provide favourable economic incentives to the market.  
The alternative of charging these cost components in the periods in which they occurred 
seems even worse. 

Ramsey pricing (Baumol and Bradford, 1970) is an often suggested approach for 
modifying marginal cost based prices so as to satisfy revenue requirements while 
minimising the distortion to demand.  Ansell and Lermit (1983) use Lagrangian techniques 

                                                 

158 For the situation of a single node, multi-period, multi-plant problem. 
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to produce what are effectively Ramsey prices for the New Zealand power pool for each 
half hour of a year159.  While their model may not be practical in the context of real-time, 
or near real-time, spatially varying spot prices, it does provide useful information about the 
relative magnitudes of desirable energy and capacity charges, and could potentially be 
used to provide information about which types of period are well suited to price 
modifications.  The need to know demand elasticities is often seen as an impediment to 
Ramsey pricing, and Schweppe et al. suggest that it might be simpler to minimise the sum 
of squares of price deviations.  It should be noted, however, that an analogous result is 
achieved naturally by gaming generating companies, as they will aim to raise prices at 
those times when the market will tolerate them.  Thus one possible solution is to simply let 
them exercise their market power to recover these costs where they can. 

Vickrey (1979) suggests that if a generating unit were be committed to meet rising 
demand then its commitment could be delayed until the price rises to the point where the 
additional producer surplus produced by the price rise equals the commitment cost.  This 
approach would require that the prices be updated very regularly, and would require a 
mechanism to return the extra producer surplus to the owner of the generating unit.   

One of the best approaches reported in the literature for addressing commitment cost 
recovery has been proposed by S. Smith (1993).  Smith proposes a heuristic methodology, 
based on an inter-temporal primal mixed-integer programming formulation, which 
determines prices, for a range of fixed daily scenarios, which ensure that the optimal mix 
of generating units will recover both their marginal and commitment costs over the time 
horizon.  This model is intended for medium to long term analysis and consequently 
abstracts away from the dynamics of power system operation.  A greedy algorithm is 
employed, based on the dual of the continuous relaxation of the primal, which works on 
the principle of raising price gradually in the period with the largest short-fall of supply.  A 
generating unit will only be committed when prices have risen sufficiently that its 
commitment costs can be recovered during those periods in which the currently assigned 
prices exceed its marginal operating cost.  A consequence of this method is that the first 
units to be introduced to the dispatch tend to be those with relatively low commitment 
costs though relatively high marginal costs.  Because of their high marginal costs these 
stations would only be used around the peak.  Sources with low marginal costs but high 
commitment costs are brought into the dispatch as the prices rise in periods surrounding 
the peak, and would tend to meet out the base load.   

                                                 

159 Strictly, they only estimate the spot price for every seventeenth half hour but this merely reflects the 
computation technology of the time. 
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Smith's model has the advantage of explicitly combining the dispatch process with 
the calculation of revenue recovering prices.  Furthermore, it is computationally simple 
and fast, with Smith reporting solution times significantly faster than those for traditional 
Lagrangian relaxation methods.  While Smith's method is an excellent planning aid, and 
provides good insights into the short run problem, it is limited in the context of dispatch 
batch based pricing by the limited detail involved in the modelling of network effects 
within a dispatch period and the system dynamics over several consecutive dispatch 
periods. 

10.3. Spot Pricing Rent Manipulation 

10.3.1. Adjusting the Pricing Model Objective Function 

Another approach to commitment cost recovery would be to allow the dispatcher to 
collect extra revenue from the spot market.  Read and Ring (1995b) argue that the 
dispatcher could do this by using a pricing model objective function which maximises the 
rents attributed to the transmission grid, hence minimising the need to recover commitment 
costs.  This proposal has the advantage of not impacting on the interpretation of the nodal 
price differentials.  It may not produce sufficient revenue to cover all commitment costs, 
though. 

10.3.2. An Uplift Approach 

For a single node problem we could apply an uplift by modifying the prices seen by 
either the generating companies or loads, so as to maintain consistency with their bids and 
offers, but not necessarily with the market clearing spot price.  Figure 10.1. demonstrates 
such a situation.  Prices for both generation and load can be moved independently within a 
range while not violating the bids or offers.  The generation spot price is set to the lowest 
feasible level.  Generating companies are paid at this price.  Consumers pay this spot price 
to cover their usage of power, but face an additional unit charge, or uplift, which goes 
towards commitment cost recovery.  This additional charge could be as great as the 
difference between the maximum and minimum possible spot prices. 
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Figure 10.1: Recovering commitment costs when the spot price is defined in a range 

The situation depicted in Figure 10.1 will not be common in practice, but Figure 10.2 
depicts a more typical situation.  The consumer spot price can be raised above the 
generation spot price while maintaining consistency with the bids of consumers.  The 
generation spot price is fixed by the offer and corresponds to the conventional market 
clearing spot price.  The price difference produces revenue to cover commitment costs.       
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Figure 10.2: Recovering commitment costs when the spot price is unique 

For a single node problem this approach is relatively straight-forward.  However, the 
analogous multiple node problem is somewhat more difficult to address.  For instance, if 
consumers and producers at each node see different prices then there is no longer a unique 
nodal price differential between each two nodes.  One way around this would be to apply 
the uplift only at a reference node, with the normal market clearing spot price defining the 
generation spot prices but with the uplifted reference price, modified for inter-nodal losses 
and congestion, defining the consumption spot prices.  This would ensure that all 
consumers (generators) were indifferent between their local price and the price of buying 
power at another node, paying the consumption (generation) spot price plus the cost of 
transmission.  A drawback of this proposal is that the uplift at a node will be the uplift at 
the reference node modified by marginal losses and congestion rents, and this may unfairly 
attribute a greater or lesser proportion of the commitment costs to those consumers who 
are electrically distant from the reference node. 

10.4. Application of Best Compromise Pricing 

The method proposed by Smith provides a good, but simple, representation of both 
the primal unit commitment/dispatch problem as well as the economics of the 
corresponding pricing problem.  The dispatcher may choose to use a model of this form to 
solve the primal problem, but our standard pricing formulation of Chapter 4 could not 
reproduce the prices of Smith's model, due to the integer nature of the problem and the lack 
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of any requirement that commitment costs be recovered.  In this section we explore the 
ways in which best compromise pricing could be applied to this problem. 

10.4.1. A Single Period Problem: Running Overhead Recovery 
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Figure 10.3: Best compromise pricing and commitment cost recovery 

Figure 10.3 demonstrates how the best compromise pricing philosophy could be 
applied so as to account for commitment costs for a single period problem.  Generating 



Chapter 10: Extensions to Spot Pricing Theory: Integer Dispatch Variables  198 

 

unit i has a marginal cost of cPi  and a running overhead of fi
160.  The bold lines in the top 

graph show the optimal economic dispatch of unit i as a function of the energy price βPi
161  

The unit should only be committed when βPi  exceeds the minimum average cost, 

�c c f
PPi Pi

i

Gi
max= + , because this is the lowest price which will cover all the costs incurred in 

committing and operating this unit.  When committed, the owner of this unit will always 
wish that it be fully loaded162.  This observation may not seem obvious, but it can be seen 
that the unit will only just break even if it generates PGi

max  at a price equalling �cPi , and for 

any lower generation its profit will be negative, having a value of: 
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  (10.1) 

Alternatively, given an observed generation level of P PGi
o

Gi
max= 0 5.  then a consistent price 

would have to equal at least c f
PPi

i

Gi
max+ 2 ., which exceeds �cPi , and hence, if presented with 

the higher price, the owners of generating unit i would expect that unit to be fully loaded, 
and hence would expect to be compensated. 

The second graph in Figure 10.3 illustrates the compensation required if generating 
unit i is committed (i.e. P P PGi

min
Gi
o

Gi
max≤ ≤ ).  The ideal profit received by this unit is zero 

when βPi  is less than �cPi  but rises by PGi
max  for each unit increase in βPi  beyond �cPi .  If we 

define the actual average operating cost by: 

 c c f
PPi

o
Pi

i

Gi
o= +    (10.2) 

Then the actual profit line has a slope of PGi
o  and is negative while βPi  is less than cPi

o  
(equalling − fi  when βPi Pic= ), but positive otherwise.  The compensation required is just 

                                                 

160 This could equally be thought of as a start-up cost for a single period problem.  We refer to it as a 
running overhead because we will develop a multi-period formulation, which also involves explicit 
start-up costs, below. 

161 For a single period problem there is no reason to have the lower generating bound of a committed 
generating unit binding.  If the price recovers all costs in the period it should run at full output, 
while if the price fails to recover all costs then it should not be committed.  If the price exactly 
covers the costs then this unit is marginal, but, as discussed next, the marginal cost must be 
consistent with being fully loaded. 

162 Given that the marginal operating cost is assumed to be constant across the entire generating range.  
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the ideal profit curve less the actual profit curve.  The minimum compensation occurs 
when βPi  equals �cPi , and has a value of: 
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Where: 
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If the zero-one parameter δ fi  were to always equal one then if generating unit i had 
not been committed (PGi

o = 0) we would have Ω fi if= , even though unit i has not actually 
incurred the running overhead, hence δ fi  acts to set Ω fi = 0 in this event163.  The value of 
Ω fi  can be thought of as compensation for under-utilisation of the committed capacity.  

Indeed, for a unit which is observed to have been committed, it has the same magnitude 
but the opposite sign to the loss defined in (10.1), and will therefore cancel out that loss.  It 
also follows from (10.1) and (10.2) that164: 

 ( ) o
Gi

o
PiPifi Pcc −=Ω ˆ   (10.5) 

To interpret Ω fi , consider the case where βPi  equals �cPi .  If the unit were fully loaded 
then �cPi  is the actual average operating cost and no compensation is required, and hence 
 Ω fi = 0 165.  But if the unit is only partially loaded then the actual operating cost is cPi

o , 
which increases with decreasing PGi

o , and Ω fi  covers the difference between βPi  and this 
cost.  The value of  Ω fi  also increases with decreasing PGi

o  and its maximum possible value 

is: 

 Limit  
P P fi i
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f
= →

=
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Ω   (10.6) 

                                                 

163 The situation where the unit has not been committed is discussed below, and corresponds to the 
situation depicted in the lower diagram in Figure 10.3. 

164 We do not require the term δ fi  here, because  the situation where this should be zero corresponds to 

PGi
o = 0 . 

165 In this case the compensation shown in the middle graph of Figure 10.3 will be positive, with a 
slope of −PGi

max  for βPi Pic≤ � ,, and be zero for βPi Pic≥ � . 
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The final graph in Figure 10.3 depicts the situation where generating unit i is not 
committed166.  In this situation the actual profit is zero for all values of βPi  and the optimal 

compensation equals the ideal profit.   

It is apparent that regardless of whether or not generating unit i is committed, the 
compensation functions illustrated in Figure 10.3 have slopes of −PGi

o 167 for βPi Pi
oc<  and 

P PGi
max

Gi
o−  for βPi Pi

oc> .  These slopes are identical to those of the best compromise pricing 

functions discussed in Chapter 7, provided we treat the generating unit lower bounds in the 
best compromise pricing model as being zero168.  It follows that if all generating units with 
non-zero commitment costs are modelled as having lower generating bounds of zero and 
the "marginal" cost is replaced by the minimum average cost, �cPi , then the standard best 

comprise pricing formulation can determine spot prices which minimise the combined 
compensation required to recover the commitment costs and any costs due to mis-dispatch.  
The only difference is that the standard best comprise pricing formulation will set the 
compensation payment for generating unit i to be zero, rather than Ω fi  when βPi Pic= � .  
This can be remedied by adding Ω fi  to the compensation payments made to all committed 

generating units.   

For a simple dispatch which only requires generation to equal a fixed demand level, 
(and hence consumers cannot be sub-optimally dispatched and demand therefore does not 
appear in the formulation)169, the appropriate best compromise pricing formulation would 
be170: 

                                                 

166 Note that PGi
o = 0  in this case. 

167 Though this is zero if the unit is not committed. 

168 This is because if unit i should not be operating, but is, then it must be compensated for all its 
output, not just its output in excess of its lower generating bound.  For a multi-period problem this 
will not necessarily be true, though. 

169 If fixed demand was not assumed, with the prices required to be consistent with a demand curve of 
monotonically decreasing slope, then demand would appear in this formulation in a similar fashion 
to generation, except that the commitment costs for consumers will generally be zero. 

170 As noted above, to ensure that a sub-optimally committed generating unit fully recovers its cost it is 
necessary to treat the lower generating bound to be zero regardless of whether or not the generating 
unit has been committed. 
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We refer this formulation as a best compromise pricing with running overheads (RO) 
formulation.  As it is a constant, the inclusion of Ω fi  in (10.7) does not impact on the 

optimisation, but means that the optimal objective function value describes the total 
compensation payment which needs to be made.   

For this formulation Table 10.1 summarises the profits without compensation (PWC) 
that each generating unit will receive, the compensation payments that are required (CP), 
and the effective actual profits seen by each unit (EAP=PWC+CP).  In each non-trivial 
case we have presented three equivalent expressions for each of PWC, CP, and EAP.  In 
each instance the first expression is presented in terms of the non-zero terms which appear 
in (10.7), the second expression is in terms of the minimum average cost, �cPi , and the 
correction, Ω fi , which accounts for the difference between this cost and the actual average 
cost, while the third term is in terms of cPi  and fi .   

The first row in Table 10.1 shows that if the unit should be committed, and is 
committed, then the compensation accounts for the difference between the net profit 
actually earned at an output of PGi

o  and the net profit which should have been earned had 
output been PGi

max .  The results in the second row demonstrate that if the unit should be 

committed, but is not, then the compensation must equal the profits which would have 
occurred had it been committed with an output of PGi

max .  The situation described in the 

third row is for the case where the unit should not be committed but is.  The profit without 
compensation is negative (PWC<0), so the compensation payment has the same magnitude 
but opposite sign (CP=-PWC), producing the correct effective actual profit of zero 
(EAP=0).  The final case corresponds to the situation where the unit should not, and was 
not, committed, and no compensation is required. 
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Table 10.1: Summary of direct profit and compensation payments to unit i for a 
single period problem with running overheads. 

It is insightful to consider the primal problem corresponding to this RO formulation.  
Defining the primal variable corresponding to (10.8) to be −∆PGi  and forming the "dual" of 

the continuous terms in (10.7) and (10.8) gives: 
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Following the best compromise pricing derivation of Chapter 7 we define 
∆P P PGi Gi Gi

o= − , and require that the observed generation equals demand, i.e. P PGi
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If we ignore the constants in (10.15) this is just the linear relaxation of the actual 
integer problem171.  More generally, (10.15) equals the difference in costs between the 
optimal solution of the relaxed problem and the relaxed costs of the observed solution.  
Since (10.15) must equal the optimised terms in (10.7), we can conclude that the 
compensation provided by the RO formulation equals the compensation required for a 
linear relaxation of the integer problem, plus an extra component (the Ω fi  terms) to 

account for the difference between the actual average cost of the observed dispatch and the 
minimum average cost.  The minimum compensation will occur when P PG G

*o = , but this 

compensation and the corresponding best compromise market clearing prices will not be 
consistent with the optimal integer dispatch unless PG

* happens to correspond to the 

optimal integer dispatch. 

This discussion demonstrates that the RO formulation can readily account for single 
period commitment cost problems by producing a set of energy prices (βP), per unit 
compensation payments (υPi

+ , υPi
− ), and lump sum compensation (Ω fi ) which ensure that all 

                                                 

171 Note that any generation lower bounds that might exist in the actual integer problem do not appear 
here.  
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parties are satisfied at minimum cost.  If the dispatch is optimal, compensation will only be 
made where necessary to ensure that the owners of (potential) marginal generating units 
are (not) happy to enter the dispatch.   

10.4.2. A Multiple Period Problem: Start up and Running Overhead Cost Recovery 

The general multi-period commitment cost problem assumes that a start up cost is 
incurred in the period when a unit is committed, while running overheads are incurred in 
each subsequent period for which it remains committed.  Some features which make this 
general problem difficult, from a best compromise pricing perspective, are: 

•  Unlike the example in Figure 10.3, whether a generating unit is committed or not in a 
given period does not depend solely on the profits that could be earned in that period, 
but on the profits that could be earned over all the adjacent periods in which the unit 
is committed.  This means that there is strictly no unique "minimum average cost" 
with which to replace each generating unit's marginal cost in the best compromise 
pricing formulation. 

•  Furthermore, if best compromise pricing is to deem a generating unit to be 
committed sub-optimally, then the ideal compensation is the difference between 
what this unit would earn for its optimal commitment and what it earned for its 
observed solution.  Determining what the optimal commitment should be is an 
integer problem. 

Thus to fully address this problem we might need to resort to a multi-period, integer 
formulation similar to that proposed by Smith.  There are, however, several ways in which 
the standard best compromise pricing model, or a simple multi-period extension of it, 
might be used to approximately address the general commitment cost problem.  As 
suggested in the literature review, we could allow generating companies to include their 
commitment costs in their offers, and then use conventional best compromise pricing.  This 
is in fact precisely what the single period model of Figure 10.3 implies they should do.  In 
reality, though, this approach may result in generating units being committed and shut 
down more often than would occur if the dispatcher were responsible for ensuring that the 
start up costs were recovered.  As a consequence, the owners of these units might have to 
increase their offer prices considerably to offset the high rate of incurring start up costs.  
The result may be inflated prices which, while consistent with the bids and offers, produce 
a lower welfare level than would arise from a socially optimal approach to this problem.  

Alternatively, the dispatcher could ignore the commitment costs and use the standard 
best compromise pricing formulation to determine the prices for each individual period in 
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isolation, and then, given these prices172, partition the planning horizon into "dispatch 
epochs" consisting of contiguous periods during which each generating unit should be 
either committed or not committed.  While we ignore how this partition is determined, we 
suggest that a small dynamic programming formulation, possibly of the type used by 
Muckstadt and Koenig (1977), could fill this role173.  The resulting commitment schedule 
could be compared with the actual commitment, which may include a different set of 
dispatch epochs, to identify apparent inconsistencies in the observed dispatch, and 
compensation could be derived based on these inconsistencies.  The precise method and 
rules for determining this compensation are not obvious, and would need to be negotiated. 

Yet another approach is to use a best compromise pricing model based on the RO 
formulation.  While it is not clear how such a model could be applied to a general start up 
cost recovery problem, we here endeavour to show how it can be applied for a simplified 
example.  So as to abstract away from the complexities of identifying all combinations of 
actual and ideal dispatch epochs, we consider a simple multiple period problem covering a 
single cycle in demand, which we assume to be a day.  The simplifying assumptions we 
make are: 

•  The optimal prices rise monotonically to the daily peak and then fall monotonically.   

•  We assume that all units are off both before and after this day. 

•  Given the monotonic behaviour of the prices, the optimal commitment of each 
generating unit will involve, at most, incurring a single start up cost during the cycle.  
We assume that the observed commitment obeys this condition as well.  

                                                 

172 The compensation implied by the best compromise pricing solution can be ignored in the approach 
we propose here. 

173 A dynamic program could be solved for each generating unit in isolation, with two states 
(committed or uncommitted), and a number of stages equalling the number of periods. 
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Price

Time

A

Commitment 1

Commitment 3

B

C

D

E
�cPi

Commitment 2

 
 

CASE 1 
 

B+C+D≥ Fi  so generating unit i should be committed. 
Per unit generation compensation for Commitment 1 = B+D 

Per unit generation compensation for Commitment 2 = 0 
Per unit generation  compensation for Commitment 3 = A+E 

 
CASE 2 

 
B+C+D< Fi  so should not be committed 

Per unit generation compensation for Commitment 1 = Fi -C 
Per unit generation compensation for Commitment 2 = Fi -(B+C+D) 

Per unit generation compensation for Commitment 3 = A+E+(Fi -B+C+D) 
Figure 10.4: Compensation for a simplified multi-period problem 

Case 1 in Figure 10.4 depicts the resulting problem for the situation where 
generating unit i should be committed (i.e. B+C+D≥ Fi).  Generating unit i should ideally 

be committed for the time period labelled "Commitment 2" as its profits, represented by 
the area B+C+D, exceed its start up cost Fi .  If "Commitment 1" occurs instead, then the 

owners of unit i earn C, but must be compensated by B+D, because, having been 
committed, the unit should have been run for these periods and earned these rents.  If 
"Commitment 3" occurs, then compensation of A+E must be paid to cover the losses 
incurred by operating unnecessarily in unprofitable periods. 

Finally, if the unit was not committed at all it should be compensated by B+C+D 
minus Fi , because the start up costs will not been incurred in this case.  Note that 
compensation for the running overhead is implicitly accounted for by using �cPi , rather than 
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cPi  or cPi
o  as the reference cost.  If the unit is not generating at full output when optimally 

committed, then compensation would be provided as for the single period problem 
discussed above. 

Case 2 corresponds to the situation where B+C+D does not cover the start up cost of 
generating unit i.  Now the optimal commitment is to leave the unit idle for the whole 
cycle, and no compensation is required in that case.  If Commitment 1 occurs then the 
operating profit of C fails to cover the commitment cost.  Were the owners of this 
generating unit to be given compensation of B+D then they still would not recover the start 
up cost, hence the correct action is to conclude that this unit was committed erroneously 
and pay compensation of Fi -C so as to exactly cancel out the losses incurred by the 

owners.  For Commitment 3 compensation of  A+E must be paid to cover the cost of being 
dispatched in periods in which the price is less than the effective cost, while an additional 
Fi -(B+C+D) must be paid to cover that part of the start up cost not covered by the profits 
within the period.  For Commitment 2, there will still be a loss of Fi -(B+C+D), and this 

must be paid in compensation, even though that is the optimal dispatch, given that the unit 
was (wrongly) committed for the day. 

An intuitively appealing best compromise pricing formulation for this problem 
would be similar to the RO formulation, but would include additional terms which cover 
the shortfall if commitment costs are not recovered for units which are operating, and 
which cancel out the normal compensation if the unit did not operate, and should not 
operate.  The additional terms we require are developed in the following discussion. 

Ignoring start up costs, the expected profits over all periods for an optimally dispatch 
generating unit should be: 

 Expected profit without start up costs = υPi
t

Gi
max

t T

P+

∈
∑   (10.18) 

With start up costs, though, the expect profit becomes: 
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 (10.19) 

By inspection of Table 10.1 it can be surmised that a multiple period version of the RO 
formulation, which we refer to as a MRO formulation174, will reproduce these expected 
                                                 

174 This formulation will minimise the sum of the individual period compensations subject to all the 
constraints which apply in each period.  The compensation it provides will be identical to the 
cumulative compensation determined by solving the BCPRO formulation for each period. 
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profits provided that the unit is correctly committed (i.e., it is committed and should be, or 
it is not committed and should not be).  Modifications would need to be made to such a 
formulation for it to determine the correct compensation in those situation where the 
commitment is not optimal.  There are two cases which need to be considered: 

1. If υ Pi
t

Gi
max

t T
iP F+

∈
∑ − ≥ 0, but the unit is not committed, then the MRO formulation will 

give compensation of υ Pi
t

Gi
max

t T

P+

∈
∑ .  Thus the MRO formulation must be modified so 

as to subtract Fi  from this to take account of the fact that the unit did not incur a 

commitment cost.   

2. If υ Pi
t

Gi
max

t T
iP F+

∈
∑ − < 0, and the unit is committed, the MRO formulation will provide 

enough compensation so that the unit earns an effective profit of υ Pi
t

Gi
max

t T

P+

∈
∑ , when it 

should in fact earn none.  Thus extra compensation of F Pi Pi
t

Gi
max

t T

− +

∈
∑υ  needs to be 

included in the MRO formulation, Fi  to cover the fixed cost incurred and 
− +

∈
∑υ Pi

t
Gi
max

t T

P  to cancel out the effective profit implied by the standard model.   

We account for these extra compensation requirements by introducing the term 
( )Fiii FU δ−− 1  into the MRO objective function, where: 
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Tt

max
Gi

t
Pii

UPF ≤












−∑
∈

+υ
0

maximum   (10.20) 

 δFi








=
commitednever  unit  if0

 timesomeat  commited unit  if1
i
i

  (10.21) 

The resulting formulation is: 
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Subject to: 
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We refer to this as a multiple period best compromise pricing with start up costs and 
running overheads (MSRO) formulation.  For ease of exposition we refer to those terms in 
(10.22) other than ( )Fiii FU δ−− 1  as the MRO compensation terms.  The MSRO 
formulation works to minimise the MRO compensation terms plus Ui  (note that 

( )FiiF δ−1  is constant).  It is apparent that: 

•  If F Pi Pi
t

Gi
max

t T

− ≤+

∈
∑υ 0  then unit i should be committed, and the MSRO formulation 

will set Ui = 0.  If the unit is not fully loaded in the periods in which it should be 

committed, or is loaded in periods when it should not be committed, then 
compensation will be provided by the MRO compensation terms.  If δFi = 1 then 

( ) 01 =−− Fiii FU δ  because the unit is optimally committed.  If, however, δFi = 0 
(this is case 1 discussed above) then ( ) iFiii FFU −=−− δ1 , this term subtracting the 

commitment cost from the MRO compensation175.   

•  If, however, F Pi Pi
t

Gi
max

t T

− >+

∈
∑υ 0, then unit i should not be committed, and the MSRO 

formulation will set U F Pi i Pi
t

Gi
max

t T

= − +

∈
∑υ .  If δFi = 1 (this is case 2 discussed above) 

                                                 

175 The MRO compensation will include compensation for the periods when the unit is operating above 
its lower bound when υPi

t− ≥ 0  as well as compensation for the periods when the unit is not fully 
loaded when 0≥+t

Piυ . 
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then ( ) ∑
∈
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t
PiiFiii PFFU υδ1 , the Fi  term covers the start up cost incurred 

by the owner of unit i while the − +

∈
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P  cancels out the matching term 

appearing in the MRO compensation (but does not cancel out the υ Pi
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∑  terms 

which compensates the owner of unit i for the losses incurred in those periods where, 
even if there were no start up cost, the unit should not have operated).  If, however, 
δFi = 0 then ( ) ∑

∈

+−=−−
Tt

max
Gi

t
PiFiii PFU υδ1 , this term cancelling out the 

compensation of υ Pi
t

Gi
max

t T

P+

∈
∑  determined by the MRO compensation terms. 

It is apparent, therefore, that the MSRO formulation will determine the compensation 
payment required so as to ensure that (10.19) is satisfied. 

We now consider the primal form of the MSRO model.  We define −∆PGi
t  to be the 

shadow price on (10.23) and 1− zi  to be the shadow price on (10.24).  We also put the 
constant terms relating to start up costs ( ( )FiiF δ−− 1 ) in (10.22) into the primal objective 

function176.  The corresponding primal formulation is: 
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Subject to: 

 ( ) max
Gii

t
Gi PzP −+∆ 1  ≤ −P PGi
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t+  ∀ ∈i PG ,∀ ∈t T  (10.29) 

 −∆PGi
t  ≤ PGi

ot  :υPi
t−  ∀ ∈i PG ,∀ ∈t T  (10.30) 

 ∆PGi
t

i PG∈
∑  = 0  :βP

t  ∀ ∈t T  (10.31) 

 1− zi  ≤ 1 :Ui   (10.32) 

Noting that 0 1 1≤ − ≤zi  is equivalent to 0 1≤ ≤zi , defining ∆P P PGi
t

Gi
t

Gi
ot= −  and 

repeating the procedure used to simplify the RO formulation primal problem we can re-
express this formulation as: 

                                                 

176 This allows us to interpret the primal objective function in a similar manner as for the RO model. 
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Subject to: 

 0 ≤ PGi
ot  ≤ z Pi Gi

max   ∀ ∈i PG ,∀ ∈t T  (10.34) 

 PGi
t

i PG∈
∑  = PD

t   ∀ ∈t T  (10.35) 

 0 ≤ zi  ≤ 1   (10.36) 

As for the RO model, (10.33) describes the difference in costs between the optimal 
solution of the relaxed problem and the relaxed costs of the observed solution, and by 
comparing (10.33) with (10.22) we can conclude that the compensation provided by the 
MSRO formulation, like that provided for the RO model, equals the compensation required 
for a linear relaxation of the integer problem, plus an extra component (the Ω fi  terms) to 

account for the difference between the actual average cost of the observed dispatch and the 
minimum average cost.  As for the RO model, the minimum compensation will occur when 
P PG G

*o = , but this compensation and the corresponding best compromise market clearing 
prices will not be consistent with the optimal integer dispatch unless PG

* happens to 

correspond to the optimal integer dispatch. 

10.5. Conclusions 

In this chapter we have discussed ways in which commitment cost might be 
recovered.  These costs are related to integer primal decision variables, and consequently 
their recovery is not guaranteed in a marginal cost based framework.  Their are two 
commonly suggested approaches to recovering commitment costs, these being to either 
impose a charge separate from the spot market transactions or to modify the spot prices.  
While a price modification approach like Ramsey Pricing has attractive properties, it is 
difficult to implement in its pure form, and its results might well be approximated by 
allowing generating companies to exercise some market power.  The greedy algorithm of 
S. Smith (1993) is a good duality based spot price modification procedure, but may not be 
able to account for enough of the detail of period by period dispatch to be useful in a 
dispatch based pricing context.  

We have proposed a number of variants on these methods, or new methods, to 
recover commitment costs.  A very simple approach proposed was to use a dispatch based 
pricing model to maximise the transmission networks rents, effectively reducing the need 
for commitment cost recovery.  This is unlikely to make a big impact, however.  The use of 
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uplift was proposed in the context of dispatch based pricing.  If applied solely to the 
pricing reference node the nodal uplift charge will tend to increase with electrical distance 
from the reference node, leading to disproportionate, and unjustifiable, allocation.  
Alternatively, if applied to more than one node in a transmission system this uplift will 
violate the consistency of inter-nodal price differentials. 

Best compromise pricing has been proposed as a promising approach for addressing 
commitment cost recovery.  We have developed a best compromise pricing formulation to 
provide compensation for a single period problem involving running overheads (the RO 
formulation).  This is just the standard best compromise formulation but with the marginal 
costs of generating units being replaced with the corresponding minimum average costs, 
and to which a constant compensation term is added to account for the difference between 
the minimum average cost and the actual observed average cost.  This formulation will 
only produce market clearing prices and compensation consistent with the optimal integer 
solution if this happens to be the observed solution, otherwise it will produce market 
clearing prices consistent with the optimal solution to the linear relaxation of the integer 
problem, though it will provide enough compensation to cover the running overheads. 

Applying best compromise pricing to general multiple period integer problems is 
more difficult.  We have suggested a number of simpler formulations which might be used, 
potentially accepting a higher compensation requirement as a trade-off against problem 
complexity.  The simplest of these approaches involved no explicit mechanism to recover 
commitment costs, forcing generating companies to account for these in their offers.  This 
could potentially give rise to significant dispatch inefficiencies.  Another approach 
involves determining compensation given the observed dispatch and some estimate of the 
energy price, without explicitly minimising the compensation.  A multiple period version 
of the RO model, which accounts for start-up costs in addition to running overheads was 
explored.  This MSRO model exhibits the same behaviour as the RO model with 
compensation equalling the compensation required for a linear relaxation of the integer 
problem plus some constant compensation terms to recover commitment costs.   

While the MSRO model was developed subject to some rather restrictive 
assumptions, we have demonstrated that best compromise pricing can allow dispatch based 
prices to be determined which account for commitment costs.    
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Chapter 11 

Conclusions 

11.1. Introduction 

The application of spot pricing to electricity markets has been proposed for some 
time, but only in the last 15 years has it become possible for these prices to provide a 
detailed representation of the economics of power system dispatch.  This reflects the fact 
that spot pricing has become an increasingly popular approach for pricing for transmission 
network usage, as well as facilitating market transactions between power producers and 
consumers.  The aim of this work has been to extend the theory of electricity spot pricing 
so as to make the approach more compatible with, and applicable to, actual markets.  This 
has involved increasing the generality and robustness of the theory, while providing a 
better understanding of the behaviour of prices, and of the forces which drive that 
behaviour.  

11.2. Summary of Results 

So as to facilitate an increase in the generality and robustness of spot pricing theory 
we have proposed, in Chapter 3, a broad philosophical interpretation of spot pricing, which 
we refer to as Dispatch Based Pricing.  Dispatch Based Pricing places the responsibility on 
the dispatcher to determine prices which satisfy the requirement that:   

Prices should be determined, after the fact, so as to be consistent with 
the observed dispatch, in the sense that they provide a rational 
economic explanation for it, given the price "floors" and "ceilings" 
expressed by the sellers and buyers in their pre-dispatch offers and 
bids. 

This approach not only allows pricing variations to be explained by optimally 
binding constraints, as considered by Caramanis et al. (1982), Schweppe et al. (1988), 
Hogan (1991, 1992), and Hogan et al. (1995), but allows sub-optimality to be a valid 
explanation.  This allows the dispatcher to control the system in a secure and economically 
rational way, knowing that the economic implications of that dispatch, and the 
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complexities of the transmission network, will be consistently reflected in prices which 
deliver commercial and economic benefits to all parties. 

To achieve an economically consistent explanation of an optimal power system 
dispatch it is necessary to represent as wide a variety of dispatch constraints into the 
pricing model as possible.  Each additional constraint which is modelled provides a new 
option for explaining the economics of a dispatch, and hence can lead to more accurate 
pricing.  In Chapter 4 we derived a pricing model for an AC power system.  Following 
Hogan (1991), this model is the dual of the linearisation about an observed solution of a, 
possibly notational, Optimal Power Flow formulation.  This means that our model is based 
on a "snapshot" of the system state.  Our Optimal Power Flow formulation employs a PVQ 
representation of the primal independent variables, which provides a more general 
representation of the relationship between the electrical variables than the PQ 
representation used by Hogan (1991) and Hogan et al. (1995).  The OPF includes active 
and reactive power conservation constraints, constraints on dependent reactive power 
injections and voltage magnitudes, and a general constraint.  Given an optimal solution to 
this OPF the dual objective function is redundant provided that the complementary 
slackness conditions are imposed directly onto the dual variables, allowing us to substitute 
an arbitrary pricing objective. 

The prices produced by the resulting linear programming problem are driven by the 
observation of what appears to be out of merit order dispatch, and the physical constraints 
which explain it, avoiding the need to monitor or reconstruct the dispatch processes 
themselves.  We have described the basic economic interpretation of these prices, and 
demonstrated that they produce first order incentives consistent with the OPF formulation.   
While the snapshot approach may appear to abstract somewhat from reality, we have 
demonstrated, for example, that the primal variables which are constrained and sub-
optimal in one time frame may appear optimal and unconstrained in others with different 
prices resulting in each case.  Consequently, we argue, the form of the "correct" pricing 
model varies with the scope of the dispatch problem, and as the scope of the dispatch 
problem changes the nearer the dispatcher gets to the actual dispatch period, it is 
reasonable to price based on the actual snapshot of the dispatch, while incorporating other 
effects as additions to this basic model.   

The general constraint of Chapter 4 was used in Chapter 5 to derive prices for both 
constraints on transmission flow and transmission line heating.  The impact of these 
constraints for cyclic lines were demonstrated to be somewhat more complicated than for 
acyclic lines, the latter being the more commonly considered case.  We have described the 
prices around a cyclic line in terms of the "Spring Washer Effect".  We show that when a 
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link in a cyclic network becomes binding that two marginal nodes are required to react 
simultaneously so as to satisfy this constraint while meeting changes in demand.  As these 
nodes will have different prices, the prices around the network are forced to rise from the 
side of the constraint nearest the cheapest marginal node around to side nearest the most 
expensive marginal node.   

The general constraint of Chapter 4 was also used to study spinning reserve target 
constraints in Chapter 6.  We modelled constraints which are consistent with the present 
reserve requirements in New Zealand.  These constraints require that, in the event that the 
largest single source of power in each island fails, the remaining generating units have the 
ability to increase their output within several seconds to stop the system frequency falling, 
and then to make up for the lost power production.  We have demonstrated that the price 
for reserve capacity should fully compensate those generating units which provide reserve 
for the opportunity costs incurred on the energy production foregone.  This model ignores 
the variety of contingencies which may occur, and the way in which reserve may be used 
to meet them.  

The model of Chapter 4 can only explain the examples of out of merit order dispatch 
which are notified to it by setting price constraints corresponding to constraints on the 
dispatch.  Even when all constraints which are believed to have been binding within the 
period are accounted for, some inconsistencies are likely to remain.  These may be due to 
problems in interpreting the data, to constraints of a type not accounted for in the model, or 
which have not been properly communicated to the model, or to genuinely sub-optimal 
dispatch.   

Past approaches to accounting for inconsistencies in dispatches, have taken no 
account of the economic costs of these inconsistencies, instead relying on arbitrary 
remedies.  In Chapter 7 we presented a best compromise pricing approach, based on a goal 
programming formulation, which determines spot prices which minimise the (possibly 
notional) compensation payments that need be made to each market participant so as to 
account for any discrepancy between their bids and offers and the spot price.  When 
applied to a truly linear problem, best compromise pricing reproduces the optimal spot 
prices.  The approximations required to model more realistic non-linear problems may 
mean that while no one buying or selling power will make a loss on the transaction that 
occurs in the sub-optimal solution, the best compromise spot prices will not necessarily 
match the "true" spot prices (if these exist), and hence not all of the welfare loss will 
necessarily be recovered by compensation.  More research should be conducted in this 
area. 
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If a dispatcher is required to pay compensation, then this might be collected via some 
annual fee.  In minimising the payouts from this fund, an incentive is created for the 
dispatcher to efficiently operate the system.  If the dispatcher is the grid owner an incentive 
may exist for the dispatcher to make a trade-off between claiming that a dispatch is sub-
optimal or more tightly constrained than is really the case.  This situation can lead to the 
dispatcher making revenues far in excess of what they should be.  To address this situation 
we have proposed the use of capacity rights, which market participants have an incentive 
to acquire anyway, so as to transfer such excess rents from the dispatcher back to the 
market participants.  

Our analysis of dispatch based pricing was initially based on the assumption that we 
were only faced with a single period, deterministic, dispatch problem involving no integer 
variables.  In Chapters 8 to 10 we demonstrate that the dispatch based pricing philosophy 
has the flexibility to allow these complexities to be addressed within a spot pricing 
framework.  It must be noted, however, that their is potential for significant further work in 
these areas. 

In Chapter 8 we considered three ways of addressing inter-temporal problems when a 
detailed multi-period representation is considered too complex.  An offer price 
modification approach involved generating companies modifying their offer prices so as to 
account for the inter-temporal effect.  A quantity targeting approach involved having 
generating companies fix the level at which they wish to generate, effectively relieving the 
dispatcher of all responsibility to explain this dispatch and placing all the risk on to the 
generating company.  The third approach involved each generating company explicitly 
informing the dispatcher of any ramping constraints, hence requiring that the dispatcher 
take responsibility for these constraints, explicitly accounting for them via dispatch based 
pricing and best compromise pricing.  What ever approach is used, effectively the same 
judgements must be made, and it is moot whether it is more efficient or effective for these 
to be made by a central dispatcher or by many independent market participants.  In 
Chapter 8 we also conclude that second order incentive may exist for a profit maximising 
generating company to modify the form of its ramping constraints, and note that while the 
offer modification approach may go some way to limiting this effect. 

The stochastic reserve problem was discussed in Chapter 9.  Given the complexity of 
accurately modelling this problem we have suggested that dispatch based prices be based 
on a simpler "Optimal Reserve Targeting" (ORT) model.  This model, which is similar to 
one proposed by Caramanis et al. (1987), effectively determines the optimal level of 
reserve to be carried without blackout being called upon.  For this model we have shown 
that dispatch based prices based on intentions should be consistent with prices based on 
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dispatch outcomes, even though prices do not necessarily rise in contingency states relative 
to the base state.  The base state price does not necessarily correspond to the marginal cost 
of any generating source, but accounts for the price difference between the marginal cost 
of meeting an incremental increase in demand, and the expected marginal cost of calling 
on reserve in a contingency state.  The incentives created by the ORT model prices have 
been analysed and used to describe the factors which influence how much reserve each 
source provides.  We have not considered the inter-temporal aspects associated with the 
stochastic reserve problem. 

The recovery of commitment costs, these being related to primal integer variables, 
was discussed in Chapter 10.  While a range of methods have been proposed in the 
literature, none of these adequately address the short run commitment cost recovery 
problem to the same level of detail proposed for marginal cost recovery.  While some 
commitment costs may be recovered by maximising spot market rents or by "uplifting" the 
price at the spot pricing reference node these methods are unlikely to make a significant 
contribution.  We therefore proposed the use of best compromise pricing to provide 
compensation to cover those commitment costs not recovered via conventional spot prices.  
We have demonstrated that a best compromise pricing model based on the linear relaxation 
of an integer dispatch problem (with some extra compensation terms, dependent only the 
observed dispatch, added to the best compromise pricing objective function) can 
adequately recover commitment costs for single period problems and special cases of the 
general multiple period problem.   
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Appendix A 

Derivation of a Dispatch Based Pricing Model 

A.1. Introduction 

In this Appendix the dual pricing equations (4.15) to (4.24) are derived from the 
primal OPF equations (4.1) to (4.14).  The prices we wish to derive each correspond to the 
change in the cost of operating the power system when the availability of one of the 
resources is incrementally changed.  Consequently we can form these prices by linearising 
the OPF in the immediate vicinity of an observed dispatch.  The mathematical 
programming dual of this linearisation determines the prices required.  This technique is 
essentially that used by Hogan (1991, 1992) but with some modifications. 

A.2. Linearisation of the Primal OPF 

In this section we describe the steps involved in linearising the OPF, presenting the 
resulting linear problem at the end. 

A.2.1. Linearising Non-Differentiable Functions 

While most of the functions in the OPF described by (4.1) to (4.14) are assumed to 
be convex177 with unique derivatives, the cost function (4.1) and general constraints (4.6) 
are assumed to include functions which are convex but have points at which they are non-
differentiable with respect to some variables178.  That is, these functions may have 
"corners" which imply different derivatives on either "side" of an observed solution.  
Consequently, given such a function, F y( ), we must linearise it as: 

                                                 

177 See Section 4.2.4. 

178 The general constraints are the only constraints which can involve derivatives with respect to 
dependent variables, though.   
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Where y*  is the observed value of variable y .  The values of the left and right hand sides 
of (A.1) are, by definition, the same at the observed solution.  It should be noted that an 
increase in y−  corresponds to a decrease in y .  This convention differs to that used by 
Hogan who had an equivalent variable to y−  which increased with y  but was constrained 
to be less than y* .  While our convention produces the same results as Hogan's, it seems a 
more intuitive way of describing incremental deviations from an observed solution.  
Provided that the function F y( ) is convex179, we will always have: 
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This linearisation and (A.3) are demonstrated by Figure A.1.     
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Figure A.1: Linearisation of a discontinuous function 

The variables which are linearised in this manner are: 

 P P P PGi Gi Gi Gi= + −+ −*  ∀ ∈i PXS  (A.4) 

 Q Q Q QGi Gi Gi Gi= + −+ −*  ∀ ∈i PXS  (A.5) 

 x x x xA A A A= + −+ −*  ∀ ∈A ND (A.6) 

We simplify the linearised objective function by replacing the cost derivative terms 
with equivalent marginal cost terms.  That is: 
                                                 

179 Non-convex  functions can only be handled by using integer variables.  These introduce a range of 
issues which may be significant, but which cannot be handled by the kind of dual formulation used 
here.  See Chapter 10 for further discussion of this. 
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With these definitions the linearised objective function, with constants ignored, can 
be represented as: 
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A.2.2. Linearisation of Differentiable Functions 

Most of the OPF constraints can be linearised using a standard Taylor expansion of 
the form: 
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To demonstrate this for one of the OPF constraints we consider the active power 
energy conservation constraint: 
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Linearising the loss function, ignoring second and higher order terms, and substituting 
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The power derivatives are represented with respect to net nodal power injections, as an 
increase in demand has an identical marginal impact to a decrease in generation180.  By 
shifting all constant terms to the right hand side and cancelling like terms, this can be re-
expressed in its final form as: 
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This linearisation differs from Hogan's because of our use of the PVQ representation 
and because of the different linearisation convention used for non-differentiable functions. 

A.2.3. Treatment of the Bounds 

While it would be possible to substitute (A.4) and (A.5) directly into the primal 
generating unit bounds we prefer to place separate bounds on the incremental increases 
and decreases in generation as shown: 

 − +PGi ≥ − +P PGi
max

Gi
*  ∀ ∈i PXS  

 − −PGi ≥ −P PGi
min
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*  ∀ ∈i PXS  

 − +QGi ≥ − +Q QGi
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Gi
*  ∀ ∈i PXS  

 − −QGi ≥ −Q QGi
min

Gi
*  ∀ ∈i PXS  

This form implies that the same cost for an increase (decreases) in generation is 
assumed for all feasible increases (decreases). 

A.2.4 The Final Form of the Linearisation 

Applying the methods described in this section to the OPF of (4.1) to (4.14) gives the 
linearised form shown in (A.13) to (A.26).  The dual variables corresponding to each of the 
primal constraints are indicated. Despite the complexity of the notation, this linearisation 
transforms the OPF from a non-linear optimisation problem into a much simpler linear 
programming problem defined about an observed solution.  The objective function 
contains only linearised variables, while the constraints have linearised variables on the 
left hand side and constant terms on the right.  

                                                 

180 This is not necessarily the case for general constraints. 



 

  

 ( ) ( ) ( )∑ −+∑ −+∑ −
∈

−−++

∈

−−++

∈

−−++

≥−+−+−+ ND
xx

PXSi
GiQiGiQi

PXSi
GiPiGiPi

,

xcxcQcQcPcPc
PXSPXSPXS

NDNDIPXSPXSPXSPXS A
AAAA    

            

0

VQP

xxQQPP

D,D

,,G,G,G,G

Minimise    (A.13) 

subject to: 

Conservation of Power 

 ( ) ( ) ( ) ∑∑∑∑
∈∈

−+

∈

−+

∈

−+ −−−−−−−−−
PVSi

i
i

A

A
P

PQi
DiGiGi

i
A

A
P

PXi
DiGiGi

i
A

A
P

PXSi
DiGiGi V

V
L

QQQ
Q

L
PPP

P
L

PPP
∂
∂

∂
∂

∂
∂

 

  =L L
P

P L
Q

Q L
V

V PP
P
A

A
i

Di
i PX

P
A

A
i

Di
i PQ

P
A

A
i

i
i PVS

Gi
i PXS

* * * * *+ + − −
∈ ∈ ∈ ∈
∑ ∑ ∑ ∑∂

∂
∂
∂

∂
∂

 :λ P   (A.14) 

 ( ) ( ) ( ) ∑∑∑∑
∈∈

−+

∈

−+

∈

−+ −−−−−−−−−
PVSi

i
i

A

A
Q

PQi
DiGiGi

i
A

A
Q

PXi
DiGiGi

i
A

A
Q

PXSi
DiGiGi V

V
L

QQQ
Q

L
PPP

P
L

QQQ
∂
∂

∂
∂

∂
∂

 

  = ∑∑∑∑
∈∈∈∈

−−++
PXSi

Gi
PVSi

i
i

A

A
Q

PQi
Di

i
A

A
Q

PXi
Di

i
A

A
Q

Q QV
V

L
Q

Q
L

P
P

L
L *****

∂
∂

∂
∂

∂
∂

 :λ Q  (A.15) 

Dependent Reactive Power Injection at PV  Nodes 
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Constraint set continues on following page 



 

 

Dependent Voltage Magnitude at PQ Nodes 
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Active and Reactive Generation and Voltage Bounds and Load Settings 
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Subject to: 
Nodal Prices Defined by OPF Demand Terms 
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Floor And Ceiling Constraints Set by Generating Unit Costs 
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Voltage Constraint Cost Relationships 
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General Variable Constraints Cost Relationships 
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A.3. The Dual of the Linearised OPF 

Standard mathematical programming theory181 can be used to form the dual of 
equations (A.13) to (A.26).  This dual is described by equations (A.27) to (A.40).  The 
primal variables corresponding to each of the dual constraints are indicated.  Note that for 
compactness that the equations of (A.33) to (A.37) each simultaneous represent the dual 
constraints of both a marginal increase and decrease in generation. 

A.3.1 Theoretical Properties of the Dual OPF 

The following theorems summarise some important properties of the dual OPF. 

Theorem A.1: The dual of the linearised OPF is the dual of the non-linear OPF if the non-
linear OPF is convex and its solution is optimal.  

Theorem A.2: If the solution to the OPF is given then any set of dual prices will suffice as 
long as they satisfy the dual constraints and the complimentary slackness conditions.  
That is, the dual objective function is arbitrary. 

Proof of Theorems A.1 and A.2. 

Theorems A.1 and A.2 can be proved using the Kuhn-Tucker conditions but the 
following proof, which employs the Wolfe Dual (Wolfe, 1961) is somewhat more explicit.  
We use the form of the Wolfe Dual described by Balinsky and Baumol (1968). 

Consider the non-linear primal problem: 
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The Wolfe Dual of this is a non-linear dual, formed without needing to explicitly 
linearised the primal problem.  This dual has the form: 

                                                 

181 See Bazaraa and Jarvis (1977), for example. 
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At the optimal OPF solution the constraints of this dual problem are identical to the 
constraints which would be produced had we formed the dual of the linearised primal.  
Furthermore, given the primal solution is already known, the objective function reduces to:  
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But f (x )*  is a constant and, since the remaining terms are just the complementary 
slackness conditions, we are left with: 

 ( ) 0
1 11

=







−−− ∑ ∑∑

= ==

n

i i

j
m

j
j

i
j

m

j
jjj x

g
x
fxgc

∂
∂

ν
∂
∂ν ** )(x  

That is, any prices ν  which satisfy both the dual constraints and this complementary 
slackness requirement are feasible prices.  Consequently, and as long as the 
complementary slackness conditions are enforced, the dual objective function is redundant, 
and we are justified in introducing any new pricing objective function.  Hence we can re-
express the dual as182: 
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182 The choice of minimising the objective function is as arbitrary as the objective function itself. 
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Here z  indicates that the term z  is zero unless the primal constraint it corresponds to is 
binding183.  Provided that primal constraints which are binding can readily be identified it 
should be straight-forward to remove these terms from the pricing problem.  While there 
will generally be only one solution to this problem, non-differentiable points in the OPF 
can result in some freedom with which values can be assigned to the dual values.  As a 
result multiple dual solutions may exist for a given primal solution (as multiple primal 
solutions may exist for a given dual solution).  This is where the use of a new pricing 
objective function is useful, as the original dual objective function cannot distinguish 
between degenerate solutions.  We have not suggested an explicit objective function as this 
is ultimately a policy issue.  In his formulation, Hogan suggests an objective function 
which minimised the transmission rents collected by the network, while Read and Ring 
(1995b) suggest maximising the transmission rents as a non-distortionary means for 
recovering some of the network fixed costs.    

As the dual constraints in the non-linear dual are identical to the dual constraints for 
a linearised primal problem, and since the dual objective function is arbitrary, we have 
proved both Theorems A.1 and A.2. 

A.3.2 Simplifying the Dual OPF. 

A number of simplifications can be made to the dual OPF.  These are: 

•  The general constraints involve the only functions which are dependent on the swing 
bus active and reactive power generation and load levels.  As a consequence, 
equation (A.29) can be represented in the same form as equation (A.28), but where 
all the derivatives with respect to active power demand, other than for the general 
constraint, are zero.  Similarly, equation (A.32) can be expressed in the same form as 
(A.30).  Hence (A.28), (A.29), (A.30), and (A.32) can be written as: 
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183 This notation was introduced by Hogan (1991). 
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•  Equation (A.31) can be re-arranged as: 
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•  We can define a price for voltage, in terms of the value of voltage capacity184, as: 
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 And hence re-express (A.38) and (A.39) as: 
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•  By substituting the equations of (A.41) into (A.33) and (A.34) and manipulating the 
results we get: 
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 Similarly, substituting equations from (A.42) into (A.35) and (A.37), and from 
(A.43) into (A.36), and manipulating the results we get: 
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•  The two equation sets represented by (A.40) can be manipulated to give: 
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184 This is discussed further in Chapter 4. 
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•  Finally, using Theorem A.2, we introduce an arbitrary pricing objective function and 
introduced the z  notation described above for those terms which correspond to 
inequality constraints which may not be binding at optimality. 

The simplified form of the dual OPF is described by equations (A.50) to (A.59) as 
well as by (4.15) to (4.24). 
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subject to:  
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Appendix B 

Notation and Notational Conventions 

B.1. Introduction 

This appendix summarises the notation and terminology used in this thesis.   

B.2. General Terminology 

bus or bus-bar A collection of nodes used in an engineering representation of a power 
system. 

consumers Those market participants who consume power. 

dispatcher The entity which coordinates the dispatch of the power system.  The 
dispatcher may also be the grid owner. 

ex post After the event. 

ex ante Prior to the event. 

generating company The company that operates one or more generating stations. 

grid owner The owner of a high voltage transmission grid.   

generating station A set of one or more generating units. 

generating unit A physical generating turbine. 
load The total demand of the consumers at a node or overall. 

node A point in the network to which a load, generating unit or transformer is attached.  
One device may be attached at several nodes, these nodes collectively 
forming a bus or bus-bar.  We often assume that there is only one 
generating unit at a node, or, when there are multiple units, that all the 
units there behave identically. 
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B.3. Abbreviations and Units 

$/MW Dollars per megawatt185. 

AC Alternating current. 

AGC Automatic generation controls 

c/kW Cents per kilowatt186. 

CCOPF Contingency constrained optimal power flow. 

CP Compensation payment. 

DC Direct current. 

EAP Effective actual profits earned by a generating unit.  EAP=PWC+CP. 

HVDC High voltage direct current. 

Hz Hertz. 

ICR Industry capacity right. 

kV Kilovolt. 

LRMC Long run marginal cost. 

MW Megawatt. 

MOM Maximum outage magnitude (for ODC). 

MRO formulation A multiple period best compromise pricing formulation including 
running overheads. 

                                                 

185 Rather than describing prices as being for power usage over some defined period, such as an hour, 
we assume an arbitrary, unitless, interval.  Hence instead of stating that $5/MWh was paid for 
3MWh, the total payment being $15, we simply state that $5/MW was paid for 3MW, the total 
payment being $15. 

186 Rather than describing prices as being for power usage over some defined period, such as an hour, 
we assume an arbitrary, unitless, interval.  Hence instead of stating that $5/MWh was paid for 
3MWh, the total payment being $15, we simply state that $5/MW was paid for 3MW, the total 
payment being $15. 
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MSRO formulation A multiple period best compromise pricing formulation including 
start up costs and running overheads. 

MVA Mega-Volt-Amperes. 

ODC Outage duration curve. 

OOMOD Out of merit order dispatch. 

OPF Optimal power flow. 

ORT model Optimal Reserve Targeting model.  

PDC Price duration curve. 

RO formulation A single period best compromise pricing formulation including running 
overheads. 

SRMC Short run marginal cost. 

TCOT Total cumulative outage time (for ODC). 

B.4. Mathematical Notation 

Notation is listed according to the chapter in which it is first used.  Notational 
conventions used by Hogan (1991) are also presented where relevant. 

Chapter 4 

Attribute This Document Hogan 

Set of all nodes PXS  

Set of non-swing bus nodes PX  

Set of all voltage controlled nodes PVS  

Set of non-swing bus voltage controlled nodes PV  

Set of reactive power controlled nodes PQ  

Set of general OPF constraints NN  
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Chapter 4 (continued) 

Attribute This Document Hogan 

Set of general OPF dependent variables which are 

not otherwise specified 

ND  

Indicator of PVQ basis representation A   

Indicator of PQ basis representation B   

The "natural" electrical basis involving only 

voltage magnitudes and phase angles.  

Vθ   

The union of sets PQ and the swing bus. PQS  

Node index i,j,n i,j 

The swing bus index i=s or "set" S s 

Index for general OPF variables A   

Index for general OPF constraints h   

Active power generation at node i PGi  gP 

Reactive power generation at node i QGi  gQ 

Active power generation at the swing bus PGs  gPs 

Reactive power generation at the swing bus QGs gQs 

Reactive power demand at node i QDi  dQi, dQ 

Active power demand at node i PDi  dPi 

Levels of active power demand at node i set 
exogenously to OPF 

PDi
set   

Levels of reactive power demand at node i set 
exogenously to OPF 

QDi
set   

Active power net injection at node i Pi   yPi 

Reactive power net injection at node i Qi  yQi 

Voltage magnitude at node i Vi  V 

Phase angle at node i θi  δ 
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Chapter 4 (continued) 

Attribute This Document Hogan 

Vector of nodal voltage levels V   

Vector of nodal active power demand levels  PD  dP 

Vector of nodal reactive power demand levels  QD  

Vector of nodal active power generation levels  PG   

Vector of nodal active power generation levels  QG   

The vector of general variables xA  x  

A shadow price relating to general variable xA  α xA   

Total active power losses LP  L, LP,Lp 

Total reactive power losses LQ  LQ,Lq 

General OPF constraint h Hh   

General OPF variable A  xA   

Generation cost function C(.)  

Cost of last unit of active power generation at node 
i 

cPi
−  ci 

Cost of next unit of active power generation at node 
i 

cPi
+  wi 

Cost of last unit of reactive power generation at 
node i 

cQi
−   

Cost of next unit of reactive power generation at 
node i 

cQi
+   

Cost of last unit of general variable xA  cxA
−   

Cost of next unit of general variable xA  cxA
+   

Marginal value of active power λ P  σP (opposite sign 
convention) 

Marginal value of reactive power λ Q  σQ (opposite sign 
convention) 
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Chapter 4 (continued) 

Attribute This Document Hogan 

Active power price at node i βPi  PPi 

Reactive power price at node i βQi  PQi 

Voltage price at node i βVi   

Swing bus active power price βPs  PPs 

Swing bus reactive power price βQs  PQs 

Voltage price at swing bus βVs   

Shadow price on constraint defining dependent 

reactive power injections at node i 

µQi   

Shadow price on constraint defining dependent 
voltage at node i 

µVi  θv 

Upper and lower bound shadow prices for active 
power generation at node i 

υ υPi Pi
+ −,   

Upper and lower bound shadow prices for reactive 
power generation at node i 

υ υQi Qi
+ −,   

Upper and lower bound shadow prices for voltage 
at node i 

υ υVi Vi
+ −,  τ1,τ2 

Marginal (active power) profit of a generating unit. υ υPi Pi
+ −−  φ 

Shadow price on general constraint h νh   

Only non-zero if the primal constraint 

corresponding to the term z  is binding 

< >z  < >z  

Indicates the lower bound of a variable. min (superscripted)  

Indicates the upper bound of a variable. max (superscripted)  

Observed value, symbol *(superscript) * (superscript) 

For all ∀   

Partial derivative with respect to, for example, 
representation A 

∂
∂A  

∂
∂

, ∇  
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Chapter 5 

Attribute This Document Hogan 

Set of transmission lines K   

Transmission lines index k (absolute circuit 
index) 

k (kth circuit between 
i and j) 

Conventional "sending" end of transmission line i(k)  

Conventional "receiving" end of transmission line j(k)  

Average active power flow on line k Pk  zPk 

average reactive power flow on line k Qk  zQk 

Maximum and minimum active power flows on line 
k 

P Pk
max

k
min,   

Maximum and minimum reactive power flows on 
line k 

Q Qk
max

k
min,   

Thermal transmission constraint right-hand side Tk
max   

Shadow price on maximum active power megawatt 
flow on line k 

ηPk  θP 

Shadow price on maximum reactive power 
megawatt flow on line k 

ηQ k  θQ 

Shadow price on thermal transmission constraint on 
line k 

χ k  µ 

Upper and lower bound shadow prices for active 
power flows on line k 

υ υPk Pk
+ −,   

Upper and lower bound shadow prices for reactive 
power flows on line k 

υ υQ k Q k
+ −,   

Marginal node  m  

The resistance between the origin and point X on a 
loop. 

RX   

The resistance between nodes i and j. Rij   

The total resistance around a loop. RT   
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Chapter 6 

Attribute This Document Hogan 

The set of reserve constraints RC  

Reserve constraint h ( ).hR   

Derivative of reserve constraint h with respect to 
increasing active power generation at node i 

ρhi
+   

Derivative of reserve constraint h with respect to 
decreasing active power generation at node i 

ρhi
−   

Contribution of generating unit i to reserve 
constraint h. 

Rhi   

Component of contribution of generating unit i to 
reserve constraint h which is independent of the 
output of generating unit i. 

ahi   

Component of reserve constraint h which is 
independent of the output of any generating unit. 

Rh0   

Shadow price on reserve constraint h (no h if only 
one constraint) 

γh  

Transmission price between two nodes TP TP 

Total profit of generating unit at node i. Π i   
Chapter 7 

Attribute This Document Hogan 

Set of all primal variables NDI  

Set of all primal constraints CS  

Amount of resource h used by variable xA . ahA   

Amount of resource h available. bh   

A change in value of general variable A  ∆xA   

Shadow price on general primal constraint h. ςh  
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Chapter 7 (continued) 

Attribute This Document Hogan 

Value of general primal variable A . βxA   

Objective function optimal value for the first phase 

of best compromise pricing. 

Ω   

Total capacity rights sold for general variable xA .  xA
capacity right   

Capacity of general variable xA assumed by the 
dispatcher. 

CAPA  

Chapter 8 

Attribute This Document Hogan 

Set of time periods. T   

Time period t (superscript)  

Shadow price on inter-temporal ramping constraint 

for generating unit i. 

τ Pi   

Shadow price on inter-temporal energy constraint 
for generating unit i. 

ξ Pi   

Chapter 9 

Attribute This Document Hogan 

The set of contingency states U  

The set of generators. PG  

Index for stochastic contingency states. u(superscript)  

Indicator of the base operational state. 0(superscript)  

Probability of base state occurring. π0   

Probability of contingency state u occurring. πu    
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Chapter 9 (continued) 

Attribute This Document Hogan 

A 0-1 parameter which takes a value of 1 if 
generating unit i is operational in state u 

δi
u    

Spinning reserve from generating unit i utilised in 
contingency state u 

pRi
u   

Load curtailment utilised in contingency state u. pC
u  .  

Blackout utilised in contingency state u. pB
u   

Marginal cost of calling on load curtailment. cC   

Marginal cost of blackout (system shortage cost). cB  

Spinning reserve capacity from generating unit i
scheduled. 

PRi    

Load curtailment capacity scheduled. PC   

Spinning reserve capacity from generating unit i

made available to the dispatcher. 

PRi
max   

Load curtailment capacity made available to the 

dispatcher. 

PC
max   

The marginal value of base state generation. 0
Pλ   

The marginal value of reserve provided in 
contingency state u. 

λ P
u   

Value of the extra energy that can be called upon 
from generating unit i in contingency state u. 

ωRi
u   

Value of the load curtailment that can called open 
in contingency state u. 

ωC
u   

Expected value of load curtailment capacity. υC
+   

Expected value of spinning reserve capacity. υRi
+   

The minimum λ P
u  value. λ P

min   
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Chapter 9 (continued) 

Attribute This Document Hogan 

The fuel cost of the generating unit which sets λ P
min

(i.e. cPR =λ P
min ) 

cPR   

The fuel cost of the marginal generating unit. cPM   
Chapter 10 

Attribute This Document Hogan 

The per period running overhead of generating unit 
i. 

fi   

A 0-1 parameter which equals 1 if generating unit i
is committed during a period. 

δ fi   

Minimum average cost of generating unit i. �cPi   

Observed actual average cost of generating unit i. cPi
o   

A compensation term which accounts for the 
difference between the minimum and actual 
average cost of generating unit i. 

Ω fi   

The start up cost of generating unit i. Fi   

A 0-1 parameter which equals 1 if generating unit i
is committed during the day. 

δFi   

A compensation term to recover the start up costs 
of generating unit i not recovered via the spot 
prices. 

Ui   
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Appendix One 

Attribute This Document Hogan 

Incremental increase in active power generation at 
node i. 

PGi
+ ≥ 0 ∆gPi≥0 

Incremental decrease in active power generation at 
node i. 

PGi
− ≥ 0 gPi ≤ gPi* 

Incremental increase in reactive power generation 
at node i. 

QGi
+ ≥ 0  

Incremental decrease in reactive power generation 
at node i. 

QGi
− ≥ 0  

Incremental increase in general OPF variable A  xA
+ ≥ 0  

Incremental increase in general OPF variable A  xA
− ≥ 0  

 

 


